Math 111 Finance Worksheet A

While cursor is blinking on the value to be calculated, enter ALPHA ENTER (SOLVE).	
TVM Solver	N = number of payment periods
N=	I% = annual interest rate (do not convert to a decimal; if APR = 9%, the $I%$ = 9)
I%=	PV = present value (amount of the loan) or beginning lump sum investment
PV=	PMT = per period payment amount
PMT=	$\mathbf{FV} = $ future value
FV=	\mathbf{P}/\mathbf{Y} = number of payments per year
P/Y=	C/Y = number of compounding periods per year
C/Y=	PMT: END BEGIN (When the regular payments are made: at the BEGINing of
PMT: END BEGIN	the period or at the END)

APPS Finance TVM Solver

1. **Lump Sum Investment**: When Bud Uronner was born, his grandfather made an initial deposit of \$3,000 into an account for his college education. Assuming an interest rate of 6% compounded quarterly, how much will the account be worth in 18 years?

N= I%= PV= PMT= FV= P/Y= C/Y= PMT: END BEGIN	$A = P \left(1 + \frac{r}{n} \right)^{nt}$ $A = 3000 \left(1 + \frac{.06}{4} \right)^{4(18)}$	 Explorations: (a) Compare the effect of increasing n on the future value. Let n take on all the usual values: 1, 2, 4, 12, 52, 365. Complete the table below. Does a larger value of n increase the future value dramatically? Explain. (b) Compare the effect of increasing r on the future value. Let r take on all the values: 1%, 5%, 8%, 9%, 13%, 20%. Complete the table below. Does a larger value of r increase the future value
		value of r increase the future value dramatically? Explain.

n	A (r = .06; P = 3000; t = 18)	r	A (n = 4; P = 3000 ; t = 18)
1		.01	
2		.05	
4		.08	
12		.09	
52		.13	
365		.20	

2. **Rule of 72**: Orson Buggy wants his \$5,000 investment to double in 6 years. What annual interest rate must he earn? Assume interest is compounded annually.

N=		Explorations:
I%=		• Compare the effect of changing t on the
PV=	$\mathbf{A} = \mathbf{p} \begin{pmatrix} 1 & \mathbf{r} \end{pmatrix}^{\mathrm{nt}}$	interest rate, r . Multiply t and r in each
PMT=	$\mathbf{A} = \mathbf{F} \begin{pmatrix} 1 + \frac{1}{n} \end{pmatrix}$	case. Let $n = 1$; $A = 10000$; $P = 5000$. Use
FV=	$(100)^{1(6)}$	the following values for $N = t$: 2, 3, 4, 6, 8,
P/Y=	$10000 = 5000 \left[1 + \frac{r}{-} \right]$	9, 12, 18, 24, 36. Complete the table
C/Y=	$\begin{pmatrix} 1 \end{pmatrix}$	below. How is this exploration related to
PMT: END BEGIN		the rule of 72?

t	r	r * t
2		
3		
4		
6		
8		
9		
12		
18		
24		
36		

3. Effective Annual Yield: Find the effective rate corresponding to a nominal rate of 8.5% compounded quarterly.

\blacktriangleright Eff(r%, n) =	$Y = \left(1 + \frac{r}{n}\right)^n - 1$
	$Y = \left(1 + \frac{.085}{4}\right)^4 - 1$

4. **Effective Annual Yield:** Find the nominal rate corresponding to an effective rate of 7.13%. Assume that the interest of the nominal rate is compounded daily.

► Nom(r%, n) =	$\mathbf{Y} = \left(1 + \frac{\mathbf{r}}{\mathbf{n}}\right)^{\mathbf{n}} - 1$
	$.0713 = \left(1 + \frac{r}{365}\right)^{365} - 1$