5.2 – Future Value of an Annuity

Geometric Sequences

A geometric sequence is an infinite list of number of the form

$$a, ar, ar^2, ar^3, ar^4, ... ar^n, ...$$

a is called the _____

So the nth term of the sequence is _____

The number r is called the ______.

#1. List the first 6 terms of the geometric sequence with a=4 and r=-3.

#2. Find the 9th term of the geometric sequence 3, 15, 75, 375, ...

We are interested in finding the sum S_n of the first n terms of a geometric sequence.

$$S_n = a + ar + ar^2 + ar^3 + ar^4 + ... + ar^{n-1}$$

We'll start by multiplying both sides by r

$$rS_n =$$

Now we'll subtract these equations from each other.

$$rS_n =$$

$$-S_n =$$

So we have

$$rS_n - S_n =$$

Sum of Terms

If a geometric sequence has first term a and common ratio r, then the sum S_n of the first n terms is given by

$$S_n = \frac{a(r^n - 1)}{r - 1}, \quad r \neq 1.$$

#3. Find the sum of the first six terms of the geometric sequence 2, 12, 72,...

When a sequence of equal payments is made at equal periods of time, it is called an ______. Payments made at the end of each period are called ______.

Suppose that \$1500 is paid at the end of the year for 6 years, in an account paying 8% compounded annually. Each \$1500 payment has to be treated separately.

How much interest will the first \$1500 earn?

How much interest will the 2nd \$1500 earn?

The last \$1500?

What does the list of numbers on the right look like?

So we have

$$\frac{a(r^n-1)}{(r-1)} \quad \text{with a =} \qquad \qquad r = \qquad \qquad n =$$

So we have a geometric sequence with the first term of R and common ratio 1+i.

$$S =$$

Future Value of an Ordinary Annuity $S = R \left[\frac{(1+i)^n - 1}{i} \right] \quad \text{or} \quad S = Rs_{\overline{n}|i}$ where $S \quad \text{is the future value;}$ $R \quad \text{is the periodic payment;}$ $i \quad \text{is the interest rate per period;}$ $n \quad \text{is the number of periods.}$

#4. Hector wants to buy a used car without getting a loan. If he sets aside \$200 per month in a savings account paying 3% interest compounded monthly, how much is in the account after 2 years? How much did Hector deposit? How much interest did he earn?				
#5. Michelle is saving money for retirement. At the end of each month she puts \$300 in an account that pays 8% interest compounded monthly. How much is in the account after 40 years? How much is interest and how much was deposits?				
A is a fund setup to receive periodic				
payments to produce a certain amount at some time in the future.				
#6.				
Experts say that the baby boom generation (Americans born between 1946 and 1960) cannot count on a company pension or Social Security to provide a comfortable retirement, as their parents did. It is recommended that they start to save early and regularly. Nancy Hart, a baby boomer, has decided to deposit \$200 each month for 20 years in an account that pays interest of 7.2% compounded monthly.				
a) How much is in the account at the end of 20 years?				
b) Nancy believe that she needs to accumulate \$130,000 in the 20-year period to have enough for retirement. What interest rate would provide that amount?				
c) Suppose Nancy can't get that interest rate, what should her monthly deposit be to have \$130,000 in 20 years?				

Sinking Fund Payment

$$R = \frac{Si}{(1+i)^n - 1} \quad \text{or} \quad R = \frac{S}{S_{\overline{n}|i}}$$

where

R is the periodic payment;

S is the future value:

i is the interest rate per period;

n is the number of periods.

#7.Buying Equipment Harv, the owner of Harv's Meats, knows that he must buy a new deboner machine in 4 years. The machine costs \$12,000. In order to accumulate enough money to pay for the machine, Harv decides to deposit a sum of money at the end of each 6 months in an account paying 6% compounded semiannually. How much should each payment be?

Savings Beth Dahlke deposits \$2435 at the beginning of each semiannual period for 8 years in an account paying 6% compounded semiannually. She then leaves that money alone, with no further deposits, for an additional 5 years. Find the final amount on deposit after the entire 13-year period.

This is actually called a "Future Value of an *Annuity Due*" – payments at the beginning of the pay-period.

$$S = R \left[\frac{\left(1+i\right)^{n+1} - 1}{i} \right] - R$$

Math 111 Finance Worksheet B

1. **Future Value Annuity**: How long will it take Dot Snice to accumulate \$1,000,000 if she invests \$3,000 per year at an annual interest rate of 8%? Assume interest is compounded annually.

N=		Explorations:
I%=	$\left[\begin{pmatrix} 1+\frac{r}{2} \end{pmatrix}^{\text{nt}} - 1\right]$	 How long will it take to
PV=	$A = PMT \left \frac{(n)}{r} \right $	accumulate \$1 million with
PMT=	[/n]	different annual investments?
FV=	$\begin{bmatrix} 1 & 08 \end{pmatrix}^{(t)} $	• How long will it take \$3000 to
P/Y=	$1000000 = 3000 \left \frac{(1 + .00)_{1}}{1000000} \right $	accumulate \$1 million with
C/Y=	.08/	different interest rates?
PMT: END BEGIN	[/1]	

PMT	t (n = 1; r = .08; A = 1000000)
600	
1200	
3000	
7200	
12000	
15000	

r	t (n = 1; PMT = 3000; A = 1000000)
.01	
.05	
.08	
.09	
.13	
.20	

2. Many employers offer a 401K or 403B plan that allows employees to invest for retirement. The beauty of the plan is that employees who invest \$15,000 in a year, will pay federal taxes on \$15,000 less in income – a tremendous tax savings. If we assume that the tax saved equals the rate of return on an investment, calculate the return on investment for the two employees below.

Salary	\$50,000	\$50,000
Investment in TSA	\$15,000	\$0
Taxable Income	\$50,000 - \$15,000 = \$35,000	\$50,000
Fed Tax Paid	\$5,308	\$9,058
State Tax Paid (4%)	(.04)(\$35000) = \$1,400	(.04)(\$50000) = \$2,000
Tax Savings:	(\$9,058 + \$2,000) - (\$5,308 + \$1,400) = \$4,350	
Rate of return:	\$4,350/\$15,000 = 29%	

Repeat the above calculations to determine the tax savings of a second employee.

Salary	\$80,000	\$80,000
Investment in TSA	\$15,000	\$0
Taxable Income		
Fed Tax Paid	\$12,902	\$17,102
State Tax Paid (4%)		
Tax Savings:		
Rate of return:		