<u>5.1 – Simple and Compound Interest</u>

	or less than a year is sometimes ved is called the	
	terest is given as a	
The the r	noney is earning interest is cal	culated in years.
Simple Interest		
	I = Prt	
where		
P is the principal;		
r is the annual inte	erest rate;	
t is the time in year	urs.	
•	pal and the interest together v	we have
P+Prt=		
This is called the		•
	Value for Simple Interest ity value A of P dollars at a simple in	interest rate r for t years is

#2. Find the maturity value for the loan at simple interest. \$12,000 loan at 5.9% for 11 months

#3.	Delinquent Taxes An accountant for a corporation forgot to pay the firm's income tax of \$321,812.85 on time. The government charged a penalty based on an annual interest rate of 13.4% for the 29 days the money was late. Find the total amount (tax and penalty) that was paid. (Use a 365-day year.)
#4.	The following is taken from https://www.moneytreeinc.com/loans/washington/online-payday-loans
HOV	V MUCH DOES A PAYDAY LOAN COST?
	lay loan costs \$15 per \$100 borrowed up to \$500, and \$10 per \$100 on the amount over \$500. For le, if you borrowed \$100 and your payday was 14 days away, the APR (Annual Percentage Rate) would and you would owe \$115 on the date of your next payday.
Fill in t	he blank for your Annual Percentage Rate on this PayDay Loan.
	eriods longer than a year, we use Illy, this means that your starts earning
Let's l	ook at \$1000 at 10% per year.

Compound Amount

$$A = P(1+i)^n$$

where
$$i = \frac{r}{m}$$
 and $n = mt$,

A is the future (maturity) value;

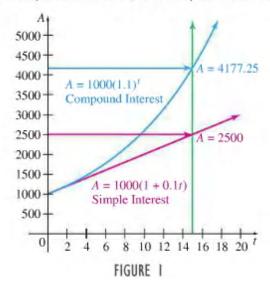
P is the principal;

r is the annual interest rate;

m is the number of compounding periods per year;

t is the number of years;

n is the number of compounding periods;


i is the interest rate per period.

- #5. Find the compound amount for
 - a) \$1000 at 4.5% compounded annually for 6 years.
 - b) \$15,000 at 6% compounded monthly for 10 years.

How much interest was earned?

#6. Comparing Investments Two partners agree to invest equal amounts in their business. One will contribute \$10,000 immediately. The other plans to contribute an equivalent amount in 3 years, when she expects to acquire a large sum of money. How much should she contribute at that time to match her partner's investment now, assuming an interest rate of 6% compounded semiannually?

It is interesting to compare loans at the same rate when simple or compound interest is used. Figure 1 shows the graphs of the simple interest and compound interest formulas with P=1000 at an annual rate of 10% from 0 to 20 years. The future value after 15 years is shown for each graph. After 15 years of compound interest, \$1000 grows to \$4177.25, whereas with simple interest, it amounts to \$2500.00, a difference of \$1677.25.

Calculate \$100 deposited at 6% compounded monthly for one year.

So the amount of interest is ______. Which means it's actually _____ for the year.

So _____ is the _____ or ____ rate,

and _____ is called the _____ rate.

In this text, to avoid confusion we will use r and r_E respectively.

Effective Rate

The effective rate corresponding to a stated rate of interest r compounded m times per year is

$$r_E = \left(1 + \frac{r}{m}\right)^m - 1.$$

#7. Find the effective rate corresponding to a stated rate of 5% compounded quarterly.

Joe Vetere needs to borrow money. His neighborhood bank charges 8% interest compounded semiannually. A downtown bank charges 7.9% interest compounded monthly. At which bank will Joe pay the lesser amount of interest?

The formula $A = P(1+i)^n$ has four variables, and if we know how much my we want in the future, we can determine how much needs to be saved/deposited today.

#9. If Nancy wants to have \$2000 in 8 years compounded semiannually at 7%, how much should she deposit now?

Present Value for Compound Interest

The present value of A dollars compounded at an interest rate i per period for n periods is

$$P = \frac{A}{(1+i)^n}$$
 or $P = A(1+i)^{-n}$.

#10. Find the Present Value of \$7500 in 9 years if money can be deposited at 5.5% compounded quarterly.

#11. How long will it take \$8	,000 deposited at 3% compounded quarterly, to
reach at least \$23,000?	(For this – we will use our graphing calculators.)
	el of inflation in the economy averages 8% per
year. Find the number of year	s it would take for the overall level of prices to
double.	
<u>Rule of 72</u> :	
Continuous Compounding – th	is is where your interest is immediately earning interest.
	ly or daily, it happens instantaneously!
	ve increase our number of compounds to more than daily.
Let's use	with an interest rate of for years.

Type of Compounding	N	Compound Amount
Quarterly	4	
Monthly	12	
Daily	360	
Every Hour		
Every Minute		

As we can see, even interest earning interest at every minute is hardly better than every hour.

(360 comes from assuming twelve 30-day months. Treasury Bills sold by the US government assume a 360-day year in calculating interest.)

	•			vo							m								14	Œ.		
1		n	n	w	ш	٠.	Ħ	n	п	e	100	n	н	n	n	~	11	n	P	1	n	n
А		u	ш	ш	н	н	u	u	ш	Э	u	u	ш	н	u	u	u		u	ш	ш	y
	_	-		-		-	-	_	-	-	-	_	-		т.	_	_		-	-		n

If a deposit of P dollars is invested at a rate of interest r compounded continuously for t years, the compound amount is

 $A = Pe^n$ dollars.

We will discuss the exponential function $f(x) = e^x$ more in chapter 10 when we get there, for now we'll just use it for continuous compounding.

#13.	Suppose that	is deposited at 6.25% compounded
conti	nuously.	
a)	Find the compounded amount an	d the interest earned after 18 years.
b)	Find the effective interest rate.	

c) Find the time required for the original _____ to grow to _____

Summary

Simple Interest	Compound Interest	Continuous Compounding
A = P(1 + rt)	$A = P(1+i)^n$	$A = Pe^n$
$P = \frac{A}{1+rt}$	$P = \frac{A}{(1+i)^n} = A(1+i)^{-n}$	$P = Ae^{-rt}$
	$r_E = \left(1 + \frac{r}{m}\right)^m - 1$	$r_E=e^r-1$

P = principal or present value

A =future or maturity value

r = annual (stated or nominal) interest rate

t = number of years

m = number of compounding periods per year

i = interest rate per period i = r/m

n = total number of compounding periods n = tm

 r_E = effective rate