3.1 – Graphing Linear Inequalities

What are some (x, y) values that make x + y < 5 true?

List them here. (Find 5 or 6 pairs)

Now plot those points on the coordinate system.

Now graph the line, x+y=5 on the coordinate system.

What do you notice about the points you found before?

Linear Inequality

A linear inequality in two variables has the form

$$ax + by \le c$$

$$ax + by < c$$

$$ax + by \ge c$$
,

or
$$ax + by > c$$
,

for real numbers a, b, and c, with a and b not both 0.

The graph of a linear inequality, is the ______ that makes the inequality _____ that half.

So the line itself represents the _____ and then one shaded side (half-plane) of the line represents the _____ and the other side represents the _____. So if the inequality is ______ the boundary line will be _____.

#1. Graph

$$2x - 3y > 6$$

#2. Graph

$$2x+3y \ge 9$$

Graphing a Linear Inequality

- Draw the graph of the boundary line. Make the line solid if the inequality involves ≤ or ≥; make the line dashed if the inequality involves < or >.
- 2. Decide which half-plane to shade. Use either of the following methods.
 - a. Solve the inequality for y; shade the region above the line if the inequality is of the form $y > \text{ or } y \ge$; shade the region below the line if the inequality is of the form $y < \text{ or } y \le$.
 - b. Choose any point not on the line as a test point. Shade the half-plane that includes the test point if the test point satisfies the original inequality; otherwise, shade the half-plane on the other side of the boundary line.

•		is a collection of	_	
Λ		ic a collection of) or more	INAMIIALITIAC
н		is a collection of		iiieuuaiities.
_	 			

#3. Graph the system

$$4x-y<6$$

$$3x + y \le 9$$

The overlapping shaded areas is often referred to as the _____

#4. Find the Feasible Region.

$$2x + 3y \le 12$$

$$2x + 3y > 3$$

$$3x + y < 4$$

$$x \ge 0$$

$$y \ge 0$$

- 43. Management The Gillette Company produces two popular battery-operated razors, the M3PowerTM and the Fusion PowerTM. Because of demand, the number of M3PowerTM razors is never more than one-half the number of Fusion PowerTM razors. The factory's production cannot exceed 800 razors per day. Let x = the number of M3PowerTM razors and y = the number of Fusion PowerTM razors produced per day.
 - a. Write a system of inequalities to express the conditions of the problem.
 - b. Graph the feasible region of the system.

