
2.1 – Solutions of Linear Systems by the Echelon Method

Suppose an anima	I feed is mad	le of corn	and soybean
	Nutritio	nal Content Corn	of Ingredients Soybeans
	Protein	3	10
	Fiber	11	4
	vant a servin		
et's assume we w	vant a servin		
	vant a servin		
	vant a servin	up this sce	nario with e

As a review, systems like this have three possibilities for solutions.

As we add more variables to our system, the geometric interpretation becomes more complicated, but the 3 possible results remain the same.

Because of the complexity of adding more variables, we are going to develop a more robust method for solving systems.

- 1. Exchange any two equations
- 2. Multiply (or divide) both sides of an equation by any nonzero real number
- 3. Replace any equation by a nonzero multiple of that equation plus a nonzero multiple of any other equation.

The _____ uses these transformations to rewrite equations of a system until it has triangular form.

$$x+ay=b$$
 $x+ay+bz=c$
 $y=c$ $y+dz=e$
 $z=f$

Each form gives the solution to the "last variable" and then we can use _____ to find the rest.

Let's show how this works with our first example.

#1. Use the Echelon Method to solve the system of equations from the animal feed example at the beginning of this section.

$$3x+10y=115$$

 $11x+4y=95$

#2. Use the Echelon Method to solve the system of equations.

$$3x-4y=5$$

$$-6x+8y=7$$

#3. Use the Echelon Method to solve the system of equations.

$$3x - 5y = 2$$
$$9x - 15y = 6$$

In this case, we're left with a "true equation" and ______ solutions.

However, the variable y here is called a _____ and we define the whole solution in terms of y.

We can write the solution as all ordered pairs of the form

Echelon Method of Solving a Linear System

- 1. If possible, arrange the equations so that there is an x_1 -term in the first equation, an x_2 -term in the second equation, and so on.
- **2.** Eliminate the x_1 -term in all equations after the first equation.
- 3. Eliminate the x_2 -term in all equations after the second equation.
- **4.** Eliminate the x_3 -term in all equations after the third equation.
- 5. Continue in this way until the last equation has the form $ax_n = k$, for constants a and k, if possible.
- 6. Multiply each equation by the reciprocal of the coefficient of its first term.
- 7. Use back-substitution to find the value of each variable.

#4. Solve the system, and let z be the parameter.

$$3x+y-z=0$$
$$2x-y+3z=-7$$

#5. Kelly Karpet Kleaners sells rug cleaning machines. The EZ model weighs 10 lb and comes in a 10-cubic-ft box. The compact model weights 20 lb and comes in an 8-cubic-ft box. The commercial model weighs 60 lb and comes in a 28-cubic-ft box. Each of their delivery vans has 248 cubic ft of space and can hold a maximum of 440 lb. In order for a van to be fully loaded, how many of each model should it carry?