Examples of Weighted Voting Systems

Math 107

· Electoral College · Business partnership · NIBA Draft 40% capital, 20%, 10% . NBA Draft Definitions Players - Voters Weights - how much power a player has Quota-# of votes to pass a motion (at least a majority) Dictator - weight 2 quota Veto Power - can prevent a motion Dummy- voter with no power Coalitions - Set of players voting together Grand Coalition - All players Winning Coalition - coalition whose weight = 2 nota Critical Players - required in a winning coalition Critical Count-number of times a player is critical quota, Pi Pa reights **Ex 1:** Looking at $\{101:99,98,3\}$, who has the power? $\{51:49,48,3\}$ 1/3 each! {P1, P33, {P1, P33, {Pa, P33, {P1, Pa, P33}, {P1, Pa, P33}, {P1, P2, P33}, {P1, P2, P33} Ex 2 (LC): Consider the weighted voting system: [q: 6, 4, 3, 3, 2, 2]. a) What is the smallest value the quota q can take? $\int \prod$ b) What is the largest value the quota q can take? (20)3,20: c) What is the value of q if *at least* three-fourths of the votes are required? $\frac{1}{4}$ d) What is the value of q if more than three-fourths of the votes are required? 3/13/15→16

Ex 3 (LC): In the following weighted voting systems, which players have veto power?

- a) [9: 8, 4, 2, 1] 📍
- b) [12: 8, 4, 2, 1] P₁, P₂
- c) [14: 8, 4, 2, 1] P, Pa, P3

Banzhaf Power Index (BPI)

(If they leave, it cannot pass)

COMPUTING THE BANZHAF POWER DISTRIBUTION

- Step 1. Make a list of all possible winning coalitions.
- Step 2. Within each winning coalition determine which are the *critical* players. (For record-keeping purposes, it is a good idea to underline each critical player.)
- Step 3. Find the critical counts B₁, B₂, ..., B_N.
- Step 4. Find $T = B_1 + B_2 + \dots + B_N$.
- Step 5. Compute the Banzhaf power indexes: $\beta_1 = \frac{B_1}{T}, \beta_2 = \frac{B_2}{T}, \dots, \beta_N = \frac{B_N}{T}$.

Shapley-Shubik Power(Chapter 2 Continued)Sequential coalitions - Every possible ordering of the candidatesFactorial - $n! = n \cdot (n-i)(n-2) \cdots 3 \cdot 2 \cdot 1$ 4 cand: $4 \cdot 3 \cdot 2 \cdot 1 = 24$ coalitions4 cand: $4 \cdot 3 \cdot 2 \cdot 1 = 24$ coalitions4! = 4:3 \cdot 2 \cdot 1 = 24Pivotal Player - the players whose votes thrn a sequentral coalitionFrom winning to losingPivotal count - $\frac{1}{4}$ of times a candidatei > pivotalShapley-Shubik Power Index (SSPI) - <u>players pivotal count</u>total # of coallitions

Ex 6 (LC): Given the following weighted voting system: [10: 5, 4, 3, 2, 1]

a) How many Sequential Coalitions will there be? $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$ b) Which is the pivotal player in <P₁, P₂, P₃, P₄, P₅>? 5+4+3c) Which is the pivotal player in <P₅, P₄, P₃, P₂, P₁>? 1 + 2 + 3 + 4

COMPUTING A SHAPLEY-SHUBIK POWER DISTRIBUTION

- Step 1. Make a list of the N! sequential coalitions with the N players.
- Step 2. In each sequential coalition determine *the* pivotal player. (For bookkeeping purposes underline the pivotal players.)
- Step 3. Find the pivotal counts SS₁, SS₂, ..., SS_N.
- Step 4. Compute the SSPIs $\sigma_1 = \frac{SS_1}{N!}, \sigma_2 = \frac{SS_2}{N!}, \ldots, \sigma_N = \frac{SS_N}{N!}$.

3!=3-2.1=6

Ex 7: Find the Shapley-Shubik Power Distribution of [16: 9, 8, 7]

 $\begin{array}{l} < P_{1}, P_{2}, P_{4}, P_{3} \\ < P_{1}, P_{3}, P_{4}, P_{3} \\ < P_{1}, P_{3}, P_{4}, P_{4} \\ \end{array} \begin{array}{l} < P_{2}, P_{1}, P_{4}, P_{3} \\ < P_{2}, P_{3}, P_{1}, P_{4} \\ < P_{1}, P_{3}, P_{4}, P_{4} \\ < P_{1}, P_{3}, P_{4}, P_{4} \\ \end{array} \begin{array}{l} < P_{2}, P_{1}, P_{4}, P_{3} \\ < P_{1}, P_{3}, P_{4}, P_{4} \\ < P_{1}, P_{3}, P_{4}, P_{4} \\ < P_{1}, P_{3}, P_{4}, P_{4} \\ \end{array} \begin{array}{l} < P_{2}, P_{1}, P_{4}, P_{3} \\ < P_{1}, P_{3}, P_{4}, P_{3} \\ \end{array} \begin{array}{l} < P_{1}, P_{3}, P_{4}, P_{3} \\ \end{array} \begin{array}{l} < P_{1}, P_{2}, P_{1}, P_{3} \\ < P_{1}, P_{3}, P_{4}, P_{3} \\ < P_{1}, P_{3}, P_{4}, P_{3} \\ < P_{2}, P_{1}, P_{3}, P_{4}, P_{3} \\ \end{array} \end{array}$ <P1, P4, P3, P2> <P2,P4, P3,P1> <3, 4,2,1> <4,3,2,1>

The Electoral College

State	Weight	Shapley-Shubik	Banzhaf	State	Weight	Shapley-Shubik	Banzhaf
Alabama	9	1.64%	1.64%	Montana	3	0.54%	0.55%
Alaska	3	0.54%	0.55%	Nebraska*	5	0.9%	0.91%
Arizona	11	2.0%	2.0%	Nevada	6	1.1%	1.1%
Arkansas	6	1.1%	1.1%	New Hampshire	4	0.72%	0.73%
California	55	11.0%	11.4%	New Jersey	14	2.6%	2.6%
Colorado	9	1.64%	1.64%	New Mexico	5	0.9%	0.91%
Connecticut	7	1.3%	1.3%	New York	29	5.5%	5.4%
Delaware	3	0.54%	0.55%	North Carolina	15	2.8%	2.7%
District of Columbia	3	0.54%	0.55%	North Dakota	3	0.54%	0.55%
Florida	29	5.5%	5.4%	Ohio	18	3.3%	3.3%
Georgia	16	2.9%	2.9%	Oklahoma	7	1.3%	1.3%
Hawaii	4	0.72%	0.73%	Oregon	7	1.3%	1.3%
Idaho	4	0.72%	0.73%	Pennsylvania	20	3.7%	3.7%
Illinois	20	3.7%	3.7%	Rhode Island	4	0.72%	0.73%
Indiana	11	2.0%	2.0%	South Carolina	9	1.64%	1.64%
Iowa	6	1.1%	1.1%	South Dakota	3	0.54%	0.55%
Kansas	6	1.1%	1.1%	Tennessee	11	2.0%	2.0%
Kentucky	8	1.5%	1.5%	Texas	38	7.3%	7.2%
Louisiana	8	1.5%	1.5%	Utah	6	1.1%	1.1%
Maine*	4	0.72%	0.73%	Vermont	3	0.54%	0.55%
Maryland	10	1.8%	1.8%	Virginia	13	2.4%	2.4%
Massachusetts	11	2.0%	2.0%	Washington	12	2.2%	2.2%
Michigan	16	2.9%	2.9%	West Virginia	5	0.9%	0.91%
Minnesota	10	1.8%	1.8%	Wisconsin	10	1.8%	1.8%
Mississippi	6	1.1%	1.1%	Wyoming	3	0.54%	0.55%
Missouri	10	1.8%	1.8%				