

We will now look at the case where $A\mathbf{x} = \mathbf{b}$ has no solution. What would be "closest" possible solution \mathbf{x} ? This is called the Least-Squares problem, and it mirrors our Best-Approximation Theorem from 6.3.

Definition

If A is $m \times n$ and **b** is in \mathbb{R}^m , a least-squares solution of $A\mathbf{x} = \mathbf{b}$ is an $\widehat{\mathbf{x}}$ in \mathbb{R}^n such that

$$\|\mathbf{b} - A\widehat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$

for all
$$x$$
 in \mathbb{R}^n . $A\vec{x} = \vec{b}$ has no solution
$$\hat{b} = \text{proj}_{CA}b \quad A\vec{x} = \hat{b} \quad \text{is consistent since } \vec{b} \in ColA$$
Let \hat{x} be that solution
$$b - \hat{b} \quad \text{is orthogonal to } ColA \quad \text{(orthogonal Decomp)}$$

$$b - A\hat{x} \quad \text{(if } \vec{b} - A\hat{x} = \vec{b}) = \vec{b} \quad \text{(if } \vec{b} - A\hat{x} = \vec{b} \quad \text{(if } \vec{b} - A\hat{x} = \vec$$

Theorem 13

The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$. coincides with the nonempty set of solutions of the normal equations $A^T A\mathbf{x} = A^T \mathbf{b}$.

$$\hat{X} = (A^{\dagger}A)^{-1}(A^{\dagger}\hat{b})$$

Ex 1: Find a least-squares solution of the inconsistent system $A\mathbf{x} = \mathbf{b}$ for

$$A^{T}A = \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & 3 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 3 & -7 & -1 \\ -1 & 2 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 & 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1$$

Ex 2: Find a least-squares solution of the inconsistent system $A\mathbf{x} = \mathbf{b}$ for

$$A^{T}A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}$$

$$A^{T}\hat{\mathbf{b}} = \begin{bmatrix} 14 \\ 4 \\ 10 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 2 & 14 \\ 2 & 2 & 0 & 4 \\ 2 & 0 & 2 & 10 \end{bmatrix} \xrightarrow{\mathbf{p}} \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\hat{\mathbf{x}} = \begin{bmatrix} A^{T}A \\ A^{T} \end{bmatrix} \begin{pmatrix} A^{T}\hat{\mathbf{b}} \\ A^{T} \end{pmatrix}$$

$$\hat{\mathbf{x}} = \begin{bmatrix} 5 \\ -3 \\ 0 \end{bmatrix} + \mathbf{x} \Rightarrow \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

Theorem 14

Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- a. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .
- b. The columns of A are linearly independent.
- c. The matrix ${\cal A}^T{\cal A}$ is invertible.

When these statements are true, the least-squares solution $\widehat{\mathbf{x}}$ is given by

If the columns of A are orthogonal, the least-squares solution is even easier to find.

Ex 4: Verify the columns of A are orthogonal and find a least-squares solution of $A\mathbf{x} = \mathbf{b}$.

Practice Problems

1. Let
$$A = \begin{bmatrix} 1 & -3 & -3 \\ 1 & 5 & 1 \\ 1 & 7 & 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$. Find a least-squares solution of $A\mathbf{x} = \mathbf{b}$, and compute the associated least-squares error.
$$A^{\top}A = \begin{bmatrix} 3 & 9 & 0 \\ 9 & 83 & 28 \\ 0 & 28 & 14 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 3 & 9 & 0 \\ 9 & 83 & 28 \\ 0 & 28 & 14 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 3 & 9 & 0 \\ 9 & 83 & 28 \\ 0 & 28 & 14 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 3 & 9 & 0 \\ 9 & 83 & 28 \\ 0 & 28 & 14 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 3 & 9 & 0 \\ 9 & 83 & 28 \\ 0 & 28 & 14 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 3 & 0 & 0 \\ 9 & 83 & 28 \\ 0 & 28 & 14 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 3 & 0 & 0 \\ 9 & 83 & 28 \\ 0 & 28 & 14 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

Now we're going to look at finding a best-fit line for a set of data points, also known as linear-regression.

$$egin{array}{c|cccc} ext{Predicted y-value} & ext{Observed y-value} \ egin{array}{c|cccc} eta_0 + eta_1 x_1 & = & y_1 \ eta_0 + eta_1 x_2 & = & y_2 \ eta_0 & eta_0 + eta_1 x_n & = & y_n \ \end{array}$$

$$Xeta = \mathbf{y}, \; ext{ where } X = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ \Box & \Box \ 1 & x_n \end{bmatrix}, \; eta = egin{bmatrix} eta_0 \ eta_1 \end{bmatrix}, \; \mathbf{y} = egin{bmatrix} y_1 \ y_2 \ \Box \ y_n \end{bmatrix}$$

Ex 5: Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fits the data points. (1,1),(4,2),(8,4),(11,5)

Ex 6: Find the quadratic regression equation $y = \beta_0 + \beta_1 x + \beta_2 x^2$ of the least-squares line that best fits the data points. (-2,12),(-1,5),(0,3),(1,2),(2,4).

The General Linear Model

In some applications, it is necessary to fit data points with something other than a straight line. In the examples that follow, the matrix equation is still $X\beta=\mathbf{y}$, but the specific form of X changes from one problem to the next. Statisticians usually introduce a **residual vector** \in , defined by $\in=\mathbf{y}-X\beta$, and write

$$\mathbf{y} = X\beta + \in$$

Any equation of this form is referred to as a **linear model**. Once X and y are determined, the goal is to minimize the length of \in , which amounts to finding a least-squares solution of $X\beta=y$. In each case, the least-squares solution $\widehat{\beta}$ is a solution of the normal equations

$$X^T X \beta = X^T \mathbf{v}$$

9. A certain experiment produces the data (1, 7.9), (2, 5.4), and (3, -.9). Describe the model that produces a least-squares fit of these points by a function of the form

