We will now look at the case where $A\mathbf{x}=\mathbf{b}$ has no solution. What would be "closest" possible solution **x**? This is called the Least-Squares problem, and it mirrors our Best-Approximation Theorem from 6.3.

Warnock - Class Notes

Definition

If A is $m \times n$ and b is in $\mathbb{R}^m,$ a least-squares solution of $A\mathbf{x} = \mathbf{b}\,$ is an $\mathbf{\widehat{x}}$ in \mathbb{R}^n such that

$$
\|\mathbf{b} - A\widehat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|
$$

for all **x** in \mathbb{R}^n . $A\vec{x} = \vec{b}$ has no solution $A = proj_{cda}$
 $b = proj_{cda}$
 $A = b$ is consistent since $b \in Col$ A Let $\hat{\chi}$ be that solution $b-b$ is orthogonal to ColA (orthogonal Decomp) $\label{eq:R1} \rho(t)=-\rho(t)$ $b - A \overset{\wedge}{\times}$ " For any \vec{a} , (a column of A) $\vec{a}_j \cdot (\vec{b} - A\vec{x}) = 0 \implies \vec{a}_j \top (b - A\vec{x}) = \vec{0}$ $A^{\top}(\mathbf{b}-A\mathbf{x})=\vec{0}\Rightarrow A^{\top}\vec{\mathbf{b}}-A^{\top}A\mathbf{x}=\vec{0}$ $A^{\top} \vec{b} = A^{\top} A \vec{x}$

Theorem 13

The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$. coincides with the nonempty set of solutions of the normal equations $A^T A {\bf x} = A^T {\bf b}.$

$$
\vec{X} = (A^{\top}A)^{-1}(A^{\top}\dot{\vec{b}})
$$

Ex 1: Find a least-squares solution of the inconsistent system A **x** $=$ **b** for

$$
A^{T}A = \begin{bmatrix} -1 & a & -i \\ 2 & -3 & 3 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ a & -3 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 6 & -11 \\ -11 & 22 \end{bmatrix}
$$

$$
A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}
$$

$$
A^{T}\overrightarrow{b} = \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & 3 \\ 2 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \\ 1 \end{bmatrix}
$$

$$
A^{T}A \overrightarrow{x} = A^{T}\overrightarrow{b}
$$

$$
\begin{bmatrix} 6 & -11 \\ -11 & 22 \end{bmatrix} \overrightarrow{x} = \begin{bmatrix} -4 \\ 1 \\ 1 \end{bmatrix}
$$

$$
A \overrightarrow{x} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}
$$

Ex 2: Find a least-squares solution of the inconsistent system A **x** = **b** for

$$
A^{T} A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 8 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 8 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 8 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 8 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 4 & 2 & 14 \\ 2 & 2 & 0 & 4 \\ 2 & 0 & 2 & 0 \end{bmatrix} - p \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 4 & 7 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 4 & 7 & 0 \\ 2 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}
$$

 $\widetilde{\chi}$

Theorem 14

Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- a. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each **b** in \mathbb{R}^m .
- b. The columns of A are linearly independent.
- c. The matrix $A^T A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

The distance from **b** to *A***x** is called the _______________________ _____________ **Ex 3:** Find the least-squares error of Ex 1.

If the columns of A are orthogonal, the least-squares solution is even easier to find.

Ex 4: Verify the columns of A are orthogonal and find a least-squares solution of A **x** = \bf{b} . $\sqrt{\sqrt{}}$

$$
\begin{aligned}\n &\bigwedge_{\substack{a \in \mathcal{A}_1 \\ b \neq 1}} \frac{b \cdot a_1}{a_1 \cdot a_1} a_1 + \frac{b \cdot a_2}{a_2 \cdot a_3} a_3 \\
&= \frac{2 + 5 - 6}{3} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \frac{2 + 6 - 6}{3} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \frac{-5 + 6 - 6}{3} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + \frac{-5 + 6 - 6}{3} \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} \\
&= \begin{bmatrix} \frac{1}{3} + \frac{14}{3} + 0 \\ \frac{1}{3} + \frac{14}{3} + 0 \\ \frac{1}{3} + \frac{14}{3} + \frac{1}{3} \end{bmatrix} \\
&= \begin{bmatrix} \frac{1}{3} + \frac{14}{3} + 0 \\ \frac{1}{3} + \frac{14}{3} + \frac{1}{3} \end{bmatrix} \\
&= \begin{bmatrix} \frac{1}{3} + \frac{14}{3} + 0 \\ \frac{1}{3} + \frac{14}{3} + \frac{1}{3} \end{bmatrix} \\
&= \begin{bmatrix} \frac{1}{3} + \frac{14}{3} + 0 \\ \frac{1}{3} + \frac{14}{3} + \frac{1}{3} \end{bmatrix} \\
&= \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \\
&= \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \\
&= \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \\
&= \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \\
&= \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \\
&= \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \\
&= \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac
$$

Practice Problems

Now we're going to look at finding a best-fit line for a set of data points, also known as linear-regression.

Ex 5: Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fits the data points. $(1,1), (4,2), (8,4), (11,5)$

Ex 6: Find the quadratic regression equation $y = \beta_0 + \beta_1 x + \beta_2 x^2$ of the least-squares **Ex 6:** Find the quadratic regression equation) $y = \beta_0 + \beta_1 x + \beta_2 x^2$ of the dine that best fits the data points. $(-2,12), (-1,5), (0,3), (1,2), (2,4)$.

The General Linear Model

In some applications, it is necessary to fit data points with something other than a straight line. In the examples that follow, the matrix equation is still $X\beta = y$, but the specific form of X changes from one problem to the next. Statisticians usually introduce a residual vector \in , defined by \in = \mathbf{y} - $X\beta$, and write

$$
\mathbf{y}=X\beta +\in
$$

Any equation of this form is referred to as a linear model. Once X and y are determined, the goal is to minimize the length of \in , which amounts to finding a least-squares solution of $X\beta = \mathbf{y}$. In each case, the least-squares solution β is a solution of the normal equations

$$
X^TX\beta=X^T\mathbf{y}
$$

9. A certain experiment produces the data $(1, 7.9)$, $(2, 5.4)$, and $(3, -.9)$. Describe the model that produces a least-squares fit of these points by a function of the form

