6.3 – Orthogonal Projections **Math 220** 6.4 – Gram-Schmidt Process Warnock - Class Notes

Given a vector \mathbf{y} and a subspace W in \mathbb{R}^n there is a vector $\hat{\mathbf{y}} \in W$ such that

- 1) $\hat{\mathbf{y}}$ is the unique vector in W for which $\mathbf{y}-\hat{\mathbf{y}}$ is orthogonal to W
- 2) $\hat{\mathbf{y}}$ is the unique vector in W closest to \mathbf{y}

Theorem 8 The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form

$$
\mathbf{y} = \widehat{\mathbf{y}} + \mathbf{z} \tag{1}
$$

where $\widehat{\textbf{y}}$ is in W and **z** is in W^{\perp} . In fact, if $\left\{ \textbf{u}_{1},\ldots,\textbf{u}_{p}\right\}$ is any orthogonal basis of W. then

$$
\widehat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \cdots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p \tag{2}
$$

and $\mathbf{z} = \mathbf{y} - \mathbf{\hat{y}}$.

 Z

Ex 1: Let $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Write **y** as the sum of a vector in W and a vector orthogonal to W .

1 Let
$$
W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}
$$
. Write \mathbf{y} as the sum
\nof a vector in W and a vector orthogonal to W .
\n
$$
\underline{u} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}
$$
\n
$$
\underline{u}_1 = \begin{bmatrix} 4 \\ 3 \\ 4 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}
$$
\n
$$
\underline{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 1/2 \\ 1/4 \\ 1/4 \end{bmatrix}, \mathbf{u}_4 = \begin{bmatrix} 1/2 \\ 1/4 \\ 1/4 \end{bmatrix} + \begin{bmatrix} 1/2 \\ 1/2 \\ 1/4 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 2/3 \\ 2/3 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 1/2 \\ 2/3 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 7/3 \\ 7/3 \\ 7/3 \end{bmatrix}
$$
\n
$$
\underline{u}_3 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 2/3 \end{bmatrix} + \begin{bmatrix} 1/2 \\ 7/3 \\ 2/3 \end{bmatrix}
$$

 $\mathbf{u}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \mathbf{u}_2$

 $=\begin{vmatrix} 1 \\ 3 \end{vmatrix}, \mathbf{u}_1 = \begin{vmatrix} 1 \\ 3 \end{vmatrix}, \mathbf{u}_2 = \begin{vmatrix} 5 \\ 1 \end{vmatrix}.$

 $\mathbf{y} = \begin{vmatrix} 1 \\ 3 \end{vmatrix}, \mathbf{u}_1 = \begin{vmatrix} 1 \\ 3 \end{vmatrix}, \mathbf{u}_2$

 $1 \mid \left[1 \right] \mid 5$ $\begin{array}{c|c} 1 & 1 \\ 3 & 3 \end{array}$, $\mathbf{u}_1 = \begin{array}{|c|} 1 & 1 \\ 3 & 3 \end{array}$, $\mathbf{u}_2 = \begin{array}{|c|} 5 & 1 \\ 1 & 1 \end{array}$

Theorem 9 The Best Approximation Theorem

Let W be a subspace of $\mathbb{R}^n, \;$ let \textbf{y} be any vector in $\mathbb{R}^n, \;$ and let $\widehat{\textbf{y}}\;$ be the orthogonal projection of y onto W. Then $\widehat{\mathbf{y}}$ is the closest point in W to y, in the sense that

$$
\|\mathbf{y}-\widehat{\mathbf{y}}\|<\|\mathbf{y}-\mathbf{v}\|
$$
 (3)

for all **v** in *W* distinct from $\hat{\mathbf{y}}$.

Ex 2: As in Ex 1,
$$
\begin{bmatrix} 10/3 \\ 2/3 \\ 8/3 \end{bmatrix}
$$
 is the closest point in $W = \text{Span}\left\{ \mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix} \right\}$ to $\mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$.
Find the distance from **y** to W

$$
\left| \begin{bmatrix} 1 & -\lambda \\ 9 & 1 \end{bmatrix} \right| = \left| \begin{bmatrix} 7 & 1 \\ 7 & 1 \end{bmatrix} \right| = \sqrt{\frac{49}{4} + \frac{49}{4} + \frac{49}{4}} = \begin{bmatrix} -7 & 1 \\ -7 & 1 \end{bmatrix}
$$

$$
\left| \begin{bmatrix} -7/3 \\ 7/3 \end{bmatrix} \right| = \frac{\sqrt{49}}{4} = \frac{3}{4}
$$

Practice Problems

1. Let
$$
\mathbf{u}_1 = \begin{bmatrix} -7 \\ 1 \\ 4 \end{bmatrix}
$$
, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} -9 \\ 1 \\ 6 \end{bmatrix}$, and $\mathbf{W} = \text{Span } \{\mathbf{u}_1, \mathbf{u}_2\}$.
\nUse the fact that \mathbf{u}_1 and \mathbf{u}_2 are orthogonal to compute $\text{proj}_{\mathbf{W}} \mathbf{y} = \begin{bmatrix} \lambda \\ \lambda \\ \lambda \end{bmatrix}$
\n
$$
\begin{aligned}\n\mathbf{u}_1 \cdot \mathbf{u}_2 &\downarrow \mathbf{u}_3 \\
\mathbf{u}_3 \cdot \mathbf{u}_4 &\downarrow \mathbf{u}_4\n\end{aligned}
$$
\n
$$
\begin{aligned}\n= \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_3} u_2 = \frac{63 + 1 + 24}{44 + 1 + 16} u_1 + \frac{9 + 1 - 12}{1 + 1 + 14} \overline{u}_2 = \frac{58}{66} \overline{u}_1 + \frac{72}{6} \overline{u}_2 \\
\hline\n\end{aligned}
$$
\n
$$
= \frac{4}{3} \begin{bmatrix} -7 \\ 1 \\ 4 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -3.5 \cdot 5 + 1.5 \cdot 12}{4 \cdot 5 \cdot 7} \\
\hline\n\end{bmatrix} = \begin{bmatrix} -9 \\ 1 \\ 6 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 6 \end{
$$

 2. Let *W* be the subspace spanned by the **u**'s, and write **y** as the sum of a vector in *W* and a vector orthogonal to *W*.

L.

$$
\mathbf{y} = \begin{bmatrix} 4 \\ 3 \\ 3 \\ -1 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 3 \\ 1 \\ -2 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \qquad \qquad \forall \underline{f} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}
$$
\n
$$
\mathbf{y} = \begin{bmatrix} 4 \\ 3 \\ 3 \\ -1 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 3 \\ 0 \\ -2 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \qquad \qquad \forall \underline{f} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}
$$
\n
$$
\mathbf{y} = \begin{bmatrix} \frac{1}{3} - \frac{2}{3} + \frac{1}{3} \\ \frac{1}{3} + \frac{1}{3} - \frac{1}{3} \\ \frac{1}{2} + \frac{1}{3} - \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad \qquad \forall \underline{f} = \begin{bmatrix} 4 \\ 3 \\ 5 \\ 0 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 5 \\ -1 \end{bmatrix}
$$
\n
$$
\mathbf{y} = \begin{bmatrix} 2 \\ 3 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix} \qquad \qquad \mathbf{y} = \begin{bmatrix} 2 \\ 3 \\ 5 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ -1 \\ -1 \end{bmatrix} \qquad \qquad \mathbf{y} = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ -1 \\ -1 \end{bmatrix}
$$

The Gram-Schmidt Process

$$
V_{3} = X_{3} - \frac{x_{3} \cdot V_{1}}{V_{1} \cdot V_{1}} - \frac{x_{3} \cdot V_{2}}{V_{2} \cdot V_{2}} \cdot V_{2}^{\prime} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \frac{2}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \frac{2}{12} \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 - \frac{1}{2} + \frac{1}{2} \\ 0 - \frac{1}{2} - \frac{1}{2} \\ 1 - \frac{1}{2} - \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 \\ -\frac{2}{2} \\ \frac{1}{2} \end{bmatrix}
$$

Theorem 11 The Gram-Schmidt Process

Given a basis $\{\mathbf x_1,\ldots,\,\mathbf x_p\}$ for a nonzero subspace W of $\mathbb R^n$, define

$$
\mathbf{v}_1 = \mathbf{x}_1
$$

\n
$$
\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1
$$

\n
$$
\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2
$$

\n
$$
\Box
$$

\n
$$
\mathbf{v}_p = \mathbf{x}_p - \frac{\mathbf{x}_p \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_p \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 - \cdots - \frac{\mathbf{x}_p \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}
$$

Then $\{ \mathbf{v}_1, \ldots, \mathbf{v}_p \}$ is an orthogonal basis for W. In addition Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\} = \text{Span }\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}$ for $1 \leq k \leq p$

The result of this is that every nonzero subspace W in \mathbb{R}^n has an orthogonal basis.

An orthonormal basis is constructed easily by normalizing all the $\mathbf{v}_k^{}$'s to unit vectors.

Practice Problems

1. Let
$$
W = \text{Span } \{ \mathbf{x}_1, \mathbf{x}_2 \}
$$
, where $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1/3 \\ 1/3 \\ -2/3 \end{bmatrix}$
Construct an orthonormal basis for W.

onstruct an orthonormal basis for *W*.

$$
V_{1} = X_{1}
$$
\n
$$
V_{2} = X_{2} - \frac{X_{2} \cdot V_{1}}{V_{1} \cdot V_{1}} V_{1} = \begin{bmatrix} V_{3} \\ V_{3} \\ -V_{3} \end{bmatrix} - \frac{V_{3} + V_{3} - V_{3}}{3} - V_{1} = V_{2} = \begin{bmatrix} V_{3} \\ V_{3} \\ -V_{3} \end{bmatrix} / |X_{2}| = \begin{bmatrix} 6/3 \\ 6/7 \end{bmatrix}
$$
\n
$$
= \frac{X_{1}}{1 \cdot X_{1}} - \frac{X_{2}}{1 \cdot X_{3}} - \frac{Y_{3}}{1 \cdot X_{3}} = \frac{Y_{4}}{1 \cdot X_{4}}
$$

2. Use the Gram-Schmidt process to produce an orthogonal basis for \hat{W} .

$$
W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} \text{ where } \mathbf{x}_1 = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 6 \\ -8 \\ -2 \\ -4 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} 6 \\ 3 \\ 6 \\ -3 \end{bmatrix}
$$

\n
$$
\bigvee_{j} \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix} \times \bigvee_{j} = \bigvee_{j} \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix} \times \bigvee_{j} \bigvee_{j} = \begin{bmatrix} 6 \\ -8 \\ -2 \end{bmatrix} - \frac{10}{12} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 + 3(-1) \\ -8 + 3(3) \\ -2 + 3(3) \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}
$$

\n
$$
\bigvee_{j} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} \times \bigvee_{j} \bigvee_{j} \bigvee_{j} \bigvee_{j} \bigvee_{j} = \begin{bmatrix} 6 \\ -1 \\ -4 \end{bmatrix} - \frac{10}{12} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \frac{10}{12} \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}
$$

\n
$$
\bigvee_{j} \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix} \times \bigvee_{j} \bigvee_{
$$