6.2 – Orthogonal Sets

A set of vectors $\{\mathbf{u}_1,...,\mathbf{u}_p\}$ is called an <u>Orthogonal Set</u> if each pair of distinct vectors from the set is orthogonal. That is, $\underline{u_i \cdot u_i} = \mathcal{O}$ when $i \neq j$.

Ex 1: Determine whether the set of vectors is orthogonal.

a)
$$\begin{bmatrix} 2 \\ -7 \\ -1 \end{bmatrix}, \begin{bmatrix} -6 \\ -3 \\ 9 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$

1: Determine whether the set of vectors is orthogonal.

a)
$$\begin{bmatrix} u_1 \\ -7 \\ -7 \\ -1 \end{bmatrix}, \begin{bmatrix} u_2 \\ -6 \\ -3 \\ 9 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$

$$u_1 \cdot u_2 = -12 + 21 - 9 = 0$$

$$u_1 \cdot u_3 = 6 - 7 + 1 = 0$$

$$u_1 \cdot u_3 = 6 - 7 + 1 = 0$$

$$u_2 \cdot u_3 = -18 - 3 - 9 = -30 \neq 0$$

$$\underbrace{\lambda_2 \cdot u_3}_{2} = -18 - 3 - 9 = -30 \neq 0$$

$$\underbrace{\lambda_3 \cdot u_3}_{2} = -18 - 3 - 9 = -30 \neq 0$$

b)
$$\begin{bmatrix} 3 \\ -2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 8 \\ 7 \\ 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} 3 \\ -2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 8 \\ 7 \\ 0 \end{bmatrix}$$
 $U_1 \cdot U_2 = -3 - 6 - 3 + 12 = 0$ Orthogonal Set
$$U_1 \cdot U_3 = 9 - 16 + 7 + 0 = 0$$
 Set
$$U_2 \cdot U_3 = -3 + 24 - 2/ + 0 = 6$$

Theorem 4

If $S = \{\mathbf{u}_1, \dots, \ \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in $\mathbb{R}^n, \$ then S is linearly independent and hence is a basis for the subspace spanned by S.

Proof:
$$\vec{O} = C_1 \vec{u}_1 + C_2 \vec{u}_2 + ... + C_p \vec{u}_p$$
 (Show $C_i = 0, 1 \le i \le p$)

 $\vec{O} \cdot \vec{u}_1 = (C_1 \vec{u}_1 + C_2 \vec{u}_2 + ... + C_p \vec{u}_p) \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_p \cdot \vec{u}_1$
 $\vec{O} = C_1 \vec{u}_1 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 + ... + C_p \vec{u}_2 \cdot \vec{u}_2 + C_2 \vec{u}_2 \cdot \vec{u}_1 + C_2 \vec{u}_2 \cdot \vec{u}_1 +$

Definition

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Theorem 5

Let $\{\mathbf{u}_1,\ldots,\,\mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y in W, the weights in the linear combination

U; u; = 0 + i + i

are given by

$$c_j = rac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \qquad (j = 1, \dots, p)$$

Express \mathbf{v} as a linear combination of the orthogonal basis. $\begin{bmatrix}
4 \\
-8 \\
-10 \\
17
\end{bmatrix}$ is in the subspace W with orthogonal basis from Ex 1b). $\vec{v} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + c_3 \vec{u}_3$ Express \mathbf{v} as a linear combination of the orthogonal basis. $\begin{bmatrix}
3 \\
-2 \\
1
\end{bmatrix}, \begin{bmatrix}
-1 \\
3 \\
8 \\
7
\end{bmatrix}$

$$C_{1} = \frac{\vec{v} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} = \frac{12 + 16 - 10 + 51}{9 + 4 + 1 + 9} = \frac{69}{23} = 3$$

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 0 \end{bmatrix}$$

$$C_{2} = \frac{\vec{v} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}} = \frac{-4 - 24 + 30 + 68}{1 + 9 + 9 + 16} = \frac{70}{35} = 2$$

$$C_{3} = \frac{\vec{v} \cdot \vec{u}_{3}}{\vec{u}_{3} \cdot \vec{u}_{3}} = \frac{12 - 64 - 70 + 0}{9 + 64 + 49 + 0} = \frac{-122}{122} = -1$$

An Orthogonal Projection
$$y = \hat{y} + Z$$

$$\int_{0}^{A} = \alpha u$$

$$Z = y - \alpha u$$

$$0 = Z \cdot U = (y - \alpha u) \cdot U$$

$$\hat{y} = \text{proj}_{W} y$$

$$0 = 9 \cdot u - \alpha u \cdot M$$

$$X = \underbrace{y \cdot u}_{u \cdot u} = \underbrace{y \cdot u$$

$$y = y + Z$$

$$Component of y$$

$$(z = y - y)$$

U => L

$$\widehat{\mathbf{y}} = \operatorname{proj}_L \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

Ex 3: Compute the orthogonal projection of
$$\begin{bmatrix} 1 \\ 7 \end{bmatrix}$$
 onto the line through $\begin{bmatrix} \widehat{\mathcal{U}} = \\ 2 \end{bmatrix}$ and the origin.

Then write $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$ as a sum of two orthogonal vectors. Also, observe geometrically.

$$Z = y - \hat{y} = \begin{bmatrix} 1 \\ 7 \end{bmatrix} - \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$y = y + z$$

$$\begin{bmatrix} 1 \\ 7 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

Ex 4: Find the distance from the vector
$$\begin{bmatrix} 1 \\ 7 \end{bmatrix}$$
 to the line through $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$ (from Ex 3).

$$\begin{vmatrix} 1 \\ 4 \end{bmatrix} = \left[-\frac{1}{2} \right] = \left[-\frac{1}{2}$$

Notice that the orthogonal projection formula matches the weights of the orthogonal basis terms in theorem 5. Theorem 5 decomposes a vector into a sum of orthogonal projections onto one-dimensional subspaces (lines).

In \mathbb{R}^2 , if we have an orthogonal basis $\left\{\mathbf{u}_1,\mathbf{u}_2\right\}$ then any $\mathbf{y} \in \mathbb{R}^2$ can be written as

$$\mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$

, = projection onto u,

A set of vectors $\{\mathbf{u}_1,...,\mathbf{u}_p\}$ is called an <u>orthonormal</u> <u>Set</u> if it is an orthogonal set of <u>unit</u> <u>vectors</u>. If W is spanned by this set, then the set is an <u>orthonormal</u> <u>basis</u> for W. Simplest orthonormal basis for \mathbb{R}^n is $\{\hat{e}_1,\hat{e}_2,\dots\hat{e}_n\}$

Any nonempty subset of this standard basis is orthonormal as well.

Ex 5: Determine whether the set of vectors is orthonormal. Is it an orthonormal basis for \mathbb{R}^3 ?

$$u \cdot u = ||\hat{u}||^2 = \frac{1}{10} + \frac{9}{20} + \frac{9}{20} = 1$$

$$||v||^2 = v \cdot v = \frac{9}{0} + \frac{1}{20} + \frac{1}{20} = 1$$

$$||w||^2 = w \cdot w = 0 + \frac{1}{2} + \frac{1}{2} = 1$$

$$||w||^2 = w \cdot w = 0 + \frac{1}{2} + \frac{1}{2} = 1$$

$$||w||^2 = w \cdot w = 0 + \frac{1}{2} + \frac{1}{2} = 1$$

$$||w||^2 = w \cdot w = 0 + \frac{1}{2} + \frac{1}{2} = 1$$

$$||w||^2 = w \cdot w = 0 + \frac{1}{2} + \frac{1}{2} = 1$$

$$\widehat{\mathcal{U}} \qquad \widehat{\sqrt{\mathbf{V}}} \qquad \widehat{\overline{\mathbf{W}}} \\
\widehat{\mathbf{J}} \sqrt{10} \\
3/\sqrt{20} \\
3/\sqrt{20} \\
3/\sqrt{20} \\
, \begin{bmatrix} 3/\sqrt{10} \\ -1/\sqrt{20} \\ -1/\sqrt{20} \\
-1/\sqrt{20} \\
\end{bmatrix}, \begin{bmatrix} 0 \\ -1/\sqrt{2} \\ 1/\sqrt{2} \\
\end{bmatrix}$$

$$\widehat{\overline{\mathbf{U}}} \cdot \widehat{\mathbf{V}} = \frac{3}{10} - \frac{3}{10} - \frac{3}{10} = 0$$

$$\widehat{\overline{\mathbf{U}}} \cdot \widehat{\mathbf{W}} = 0 - \frac{3}{10} + \frac{3}{10} = 0$$

$$\widehat{\overline{\mathbf{U}}} \cdot \widehat{\mathbf{W}} = 0 + \frac{3}{10} + \frac{3}{10} = 0$$

$$\widehat{\mathbf{W}} \cdot \widehat{\mathbf{W}} = 0 + \frac{3}{10} + \frac{3}{10} = 0$$

Theorem 6

An m imes n matrix U has orthonormal columns if and only if $U^T U = I$.

Proof:
$$\mathcal{U} = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \cdots & \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_n \\ \vec{u}_2 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_n \\ \vec{u}_2 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_n \\ \vec{u}_2 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_n \\ \vec{u}_2 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_n \\ \vec{u}_1 \cdot \vec{u}_2 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_n \\ \vec{u}_1 \cdot \vec{u}_2 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_1 \cdot \vec{u}_2 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_1 \cdot \vec{u}_2 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_1 \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \cdot \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_1 & \cdots & \vec{u}_n \\ \vec{u}_2 \cdot \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \cdot \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} = \begin{bmatrix}$$

Theorem 7

Let ${\it U}$ be an m imes n matrix with orthonormal columns, and let ${\bf x}$ and ${\bf y}$ be in \mathbb{R}^n . Then

 $\vec{l} = \vec{l} \cdot \vec{u} \cdot \vec{u} = \vec{l} \cdot \vec{u} = \vec{l}$

a.
$$\|U\mathbf{x}\| = \|\mathbf{x}\|$$

b.
$$(U\mathbf{x})\cdot(U\mathbf{y})=\mathbf{x}\cdot\mathbf{y}$$

c.
$$(U\mathbf{x})\cdot(U\mathbf{y})=0$$
 if and only if $\mathbf{x}\cdot\mathbf{y}=0$

Ex 6: Let
$$U = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} \sqrt{6} \\ 4 \end{bmatrix}$. Verify that $\|U\mathbf{x}\| \Rightarrow \|\mathbf{x}\|$

$$\|\mathbf{x}\| = \begin{bmatrix} \sqrt{6} \\ \sqrt{7} \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix}$$

An <u>Orthogonal</u> <u>Matrix</u> is a square invertible matrix U, such that $U^{-1} = U^T$. By theorem 6, it has orthonormal columns. $U^T = I$ The matrix formed from the vectors from Ex 5 is an example.

$$\begin{bmatrix} 1/\sqrt{10} & 3/\sqrt{10} & 0 \\ 3/\sqrt{20} & -1/\sqrt{20} & -1/\sqrt{2} \\ 3/\sqrt{20} & -1/\sqrt{20} & 1/\sqrt{2} \end{bmatrix}$$

Practice Problem

1. Let U and \mathbf{x} be as in example 6, and let $\mathbf{y} = \begin{bmatrix} -\sqrt{3} \\ \sqrt{2} \end{bmatrix}$. Verify that $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ $\mathcal{U} = \begin{bmatrix} -\sqrt{3} \\ \sqrt{2} \end{bmatrix}$