6.1 — Inner Product, Length, Math 220
& Orthog‘onalitv Warnock - Class Notes

If uand v are vectors in R" then we can think of them as Nx1 matrices.

SoU'isa / XN matrix and the product of u'visa | X | matrix.
We will write this as a real number without brackets, and call utv the Jnner
‘pr@JA ctU of uandv. Itis also written as U-Vand called the gf ot
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Ex 1: Compute U-V and V-U for U=|—-3| and V=| 2
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Theorem 1
Let u, v, and w be vectors in R", and let ¢ be a scalar. Then

au-v=v-u
b. (u+Vv)- w=u-w+v-w
c. (cu)-v=c(u-v)=u-(cv)

du-u>0, andu-u=0 ifandonlyifu =
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(crug + -+ uy) - w=cy(uy - W) + -+ + c(u, - w)

Definition
The length (or norm) of v is the nonnegative scalar || v|| defined by

lv|| = vV = ¢u§+u§+---+uﬁ, and v =v-v

In R? this is essentially the (a,b)
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A vector whose length is one is called the Wnit vector.

If we divide a non-zero vector v by it’s length, (\mwlﬁ?[j ‘7:_1 I VH \ we
get a unit vector in the same direction as v. Thisis called 1\ o, val/ 7/, ny

N
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Ex 2: Let V= . Find a unit vector u in the same direction as v.
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Ex 3: Let W be a subspace of R?2 spanned by X:[Blﬂ. Find a unit vector basis for W.
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How do we find the distance between two numbers on a number line?

/9’(’3)) oV /—3'5/
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Definition

Foruand vin R™, the distance between u and v, written as dist(u, v), is
the length of the vectoru — v. Thatis

Ex 4: Compute the distance between the vectors u = (7,1) and v = (3,2).
N PN
- = (4,
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Ex 5: Find the formula for the distance between two vectors
u=(u,,u,,uz) and v=(v;,v,,V,)
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Orthogonal Vectors

[l — vl

In R? or IR3 two lines through the origin are
perpendicular if the distance from u to v is the
same as the distance from u to —-v. (q/) (90/0( nd s

N/

nare of Aistamces - easics
( || n=(v)]| — l/ wrv )= O“‘/)’(‘“@
= U (ntn) + (e rv) .
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Definition

Two vectors u and v in IR" are orthogonal (to each other)ifu-v = 0.

Theorem 2 The Pythagorean Theorem

Two vectors u and v are orthogonal if and only if |u + v||* = |[ul® + ||v||°.
=< )
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If a vector z is orthogonal to every vector in a subspace W of R", then z is said to be
Dr-th O\C{l@/m/ + o6 . The set of all of these orthogonal
vectors to W is called the Oﬂthaﬂ ol wm'p//m et of W

and is denoted by W,

Ex 6: Let Whbe a plane through the origin in RS, and let L be the line through the
origin and perpendicular to W. If z and w are nonzero, zison L, and wis in W,
then the line segment from 0 to z is perpendicular to the line segment from 0 to
w; that is, z- w = (. See Figure 7. So each vector on L is orthogonal to
every w in W. In fact, L consists of all vectors that are orthogonal to the w's in
W, and W consists of all vectors orthogonal to the z's in L. That is,

L=W2"' and W=1L"' ™ Q/“’\
“ F
L

W

1. A vector x is in W if and only if x is orthogonal to every vector in a set
that spans W.

2. W is asubspace of R".

Remember our comment in 4.6 that the Null Space and Row Space are essentially

orthogonal to each other.

Theorem 3
Let A be an m xX n matrix. The orthogonal complement of the row

space of A is the null space of A, and the orthogonal complement of
the column space of A is the null space of AT:

(Row A)" =Nul A and (Col A)" = Nul A7
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Ex 7: Using the Null Space and Row Space of Ex 5 from 4.6, check that random vectors

from each are orthogonal to each other.
\

LN - —A o
=10l eG s B

N “‘A
Jﬁ,+l/\a: 9
|
1

Ex 8: Showthat W-V = | 11|| ||V|| COS U_where v is the angle between the two

vectors, using the Law of Cosines,

7‘:

2 2 2
l =" = [al|” + [[v][" — 2|l [lv]cos v

([wu w4 \/\7)
&I comr=- @w//“—//m//*— I b
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