4.4 — Coordinate Systems Math 220

Warnock - Class Notes

Theorem 7 The Unique Representation Theorem
Let B = {bl, ‘e ,bn} be a basis for a vector space V. Then for each x in V,

there exists a unique set of scalars ¢;,...,¢, such that
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Definition
Suppose B = {bl, . ,bn} is a basis for Vand x is in V. The coordinates

of X relative to the basis B (or the B-coordinates of x) are the weights
Ci,...,0, suchthatx = e;by + -+ ¢ by,.

We call this vector the _C o @ra{/'a ate Vector Cq

A+ X (_relative te (B ) x|p =

or the B""Caa/di'/\a{jf/ Ve tor 0’; >—< C

X [X]B is the C/ooraiﬂmt(; /‘/\Ofpp//\j (determined by B)

1
Ex1: Consider a basis B = {bj,ba} for B2 , where by = { ] and bs = {2]

1
0
Suppose an x in R? has the coordinate vector [X]p = { } Find x.
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Ex 2: The entries in the vector x =

basis ¢ = {e1,ea}, since

are the coordinates of x relative to the standard

- (47 e

Ife = {e1,e2}, then [x]|. = x.
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FIGURE 1 Standard graph paper.

Rz Lea
See Example 3 on page 219.
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FIGURE 2 B- graph paper.
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[ } , and B = {by,by}. Findthe
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The matrix in (3) changes the B-coordinates of a vector x into the standard
coordinates for X. An analogous change of coordinates can be carried out in [R™
for a basis B = {by,...,b,}. Let

Pp=|by by --- b,]

Then the vector equation /Mf‘(a/\)
nt —~

§

is equivalent to

X = Pp[x|p (4)

We call Pg the change-of-coordinates matrix from B to the standard basis in
R™ . Left-multiplication by Pp transforms the coordinate vector [X| 5 into x.

Since the columns of PB form a basis, they are linearly independent, and have an

inverse, which leads to

P.'x = [x], (5@@ F/@/,p us

The Coordinate Mapping
Choosing a basis B = {bl, ey bn} for a vector space Vintroduces a

coordinate system in V. The coordinate mapping X [K]B connects the

possibly unfamiliar space V to the familiar space R™. See Figure 5. Points in V
can now be identified by their new “names.”

g

FIGURE 5 The coordinate mapping from V onto R" .
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Theorem 8
Let B = {bl,. . bn} be a basis for a vector space V. Then the coordinate

mapping X + [X| 5 is a one-to-one linear transformation from V onto [R™.
(56@ Praa/y fa 4 ax'b)
4 /

A one-to-one linear transformation from a vector space V onto a vector space W is
calledan I 5o morph/sm from V onto W.

Essentially, these two vector spaces are indistinguishable.

Ex4: Let B be the standard basis of the space P; of polynomials; that is, let
B = {l,t,tz,t‘”’}. A typical element p of P has the form

2 3 L
p(t)=a, tat+at +a,t a
a
Since p is a linear combination of the standard basis vectors, then [p]B =
a2
| a3 |

So P [p]g is an isomorphism

from [P; onto 4.

Ex 5: Use coordinate vectors to test the linear independence of the sets of polynomials.

a) 1+ 282, 2—|—t—3t2 4242 4P
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Ex 6: Let Vvi=1|6]|, Vo= oy, x=1|121,
2 1 7

and B = {v1,va}. Then Bis a basis for H = Span{v1,va}. Determine if x is in
H._ and if it is, find the coordinate vector of X relative to B

=
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Practice Problems

1 —3 —8
1.Letby = | 0] ,bs = 41 ,bs = —6 ,and x = 2
0 0 3
3 Vot
a. Show that the set B = {by, by, b3} is abasis of R°. 5’/{/0/15
b. Find the change-of-coordinates matrix from B to the standard basis. 3
| 5
c. Write the equation that relates x in R* to [x] 5. b> PB et gj
C X=X
d. Find [x] for the x given above. > PB [ B~ X

I3y G lpd | Lo
oYL 2| |o
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2.Theset B={1+¢t,1+12,t+} isabasisfor P,. Findthe

c:::c:rdinat?,@ of p(t) =6+ 3t — 12 relative to B.

4
0 L) yef 77 5 [F [
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5 (/+t) +(1+2)~2( po?)=C5eL
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