4.8 — Linearly Independent Sets; Bases Math 220

Warnock - Class Notes

Recall the previous definitions of Linearly Independent and Linearly Dependent. We
are now going to think in terms of a Vector Space V, rather than just [R".
Definition V
An indexed set of vectors {vy,...,v,} in P Vis said to be linearly
independent if the vector equation

r1ve+2ave+ -+ xp,vp =10

~
—_—

has only the trivial solution. The set {vy,...,v,} is said to be linearly
dependent if there exist weights ¢y, ..., ¢, not all zero, such that

v +eve+---+¢evp =0

And recall that

Theorem 4
An indexed set {wvy,...,v,} of two or more vectors, with vy # 0, is
linearly dependent if and only if some v; (with 7 > 1) is a linear combination

of the preceding vectors, v,...,v;_ 1.

If a vector space is not just an [R" with an easy AX=0, then we need Theorem 4 to

show a linear dependence relation to prove linear dependence.

Ex 1: Discuss the linear dependence or independence of the following sets on C [0,1},

the space of all continuous functions on 0<t <1.

{sint,cost} {sintcost,sin 2t}
Sint=acost Sindt = diiate’t
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Definition
Let H be a subspace of a vector space V. An indexed set of vectors B = {b1,...,bp}

in V'is a basis for H if
(i) B is a linearly independent set, and
(il) the subspace spanned by B coincides with H; that is,
H = Span{bi,...,by}
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Ex 2: What can we say about an invertible matrix A?

’) C(){utmﬂ7 Arc )//Leél//j ;/\Acﬁ@mc[gn‘ﬁ

>Co)¢/\MV17 0; A Sﬁﬂ/\ R
Col A= baris Yoo R”

The columns of the identity matrix, €,€,5,..6n is called the

5150“/‘505&[/{ basrs: for RM.

LR ]
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Ex 3: Determine whether {vl,vz,v3} forms a basis for R3.
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Ex4: LetS— {l,t,tg,. . ,t“}. \ferify that S is a basis for [’,. This basis is called the
standard basis for P,,. S 5pans ’Py\ (a // ,/055/,;/6 terms ave f/éSf/rﬁ)

Ca—"c/ t + Cd\/tl—('""‘—ch‘tm;o
T =67 67..26,=0
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y ©

A basis is an “efficient” spanning set because it contains no unnecessary vectors.
=
Ex5: Let H =Span{v1,v2,v3} as in Ex 3. Show that Span{vl,vz,v3}ZSpan{v1,v2}

(3) §f””§\7\u\7}}éH; 5/nce CID»*‘*U“WF@ 1 3

<é> Use v}:%ﬁﬁ,@ (’?/@m E><3> v,=|4|v,=-1|,v,=| 0
N )A N — 4 -2 -2
let X e H) X = C/\/|+6XV;L+C;\/}

(any) e cﬁ/a* ¢ @V}MT&) .
:@, +2{63> v} + (cgfrlé}) \—/,2 & 5}”“"‘ {V/ /\/"}
,a, Sfﬂm {\7\,/@;,0}2:5/04/‘ g_\z)v\l}

Theorem 5 The Spanning Set Theorem
Let S = {v1,...,vp} beasetinV andlet H= Span {vi,...,vp}.

a. If one of the vectors in S—say, v —is a linear combination of the remaining vectors
in S, then the set formed from S by removing v, still spans H.

b.If H # {0}, some subset of Sis a basis for H. R N
a) f@'ow/mnﬂe, to W\Mke, V{<: \)P: a/\/‘+a}\/a+‘, 4’6(’,,_,\/‘9—/
)et ;()é H‘V S?; C/Oﬁéﬁl\&/}*.. . 'l'CF_/ VP-/ 'i'@)Vjp
:C/\?/ 1'C0\\7/;f "'+Cf-/ 2[7—!
(f,a,vicf% Vit ,wifaf,; \/F"’ a1
:(Cﬁ‘r“/)\/,*(‘ﬂff‘.)\/&* +<CF” f’f‘") \//p—)
H: Sf“/\ {—\7))"’\/10‘3
b) H lneavly erfgw(m watil 1 BIE 3pas gv)/,_vﬂ}; /H
5 no lt?/ljer lf/\fwfij Jéfé‘“&[f”‘btfp lf’\ I'V\(L) 5f447 H

0 = M = ~
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Proof:
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We already know how to find a basis for the Nul A, as we saw that the row reduced
system that describes the solutions of Nul A, is already linearly independent.

However, finding a basis for Col A that doesn’t have unneeded vectors is our next step.

Ex 6: Find a Basis for Col B where

10 30 4

_ |01 40 -5

B=[b, b, by b, b]=lg 5 o 1
000 00 - ~

Ex 7: Find a Basis for Col A where, A reduces to the matrix B in the previous example.

10 31 2],,,.kF Por el

(/€ _ )

Al|0 1 431 e H’§/)“” SIS

32 1 -8 6 2,5 L
2 36 7 9

Since AX=0 and the reduced echelon form BX=0 have the exact same solution sets,
then their columns have the exact same dependence relationships. Let’s check.

/\;’;; '3@,4%-(;9_
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WARNING:

You must use the original pivot columns of A. Why doesn’t COlIA=Span {bl,bz,b4}?

-
Z/ Qmifﬁ) C@/A N o v ajae?
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Theorem 6
The pivot columns of a matrix A form a basis for Col A. x

L—P //'/Leax/fj ;’/\Jqﬁgnizn% 5Fa/1/1/'ftj set

A Basis is basically the smallest spanning set possible. Remove any vectors from it, and
the set is no longer spanned, add any vectors to it, and it becomes linearly dependent.

1 2 1 2 4 1 2 4 7
01,13 Ofs13]:15 Ofs|3]:]5(:|8
0 0 0 0 6 0 0 6 9
Linearly independent A basis Spans B but is
but does not span #* for B3 linearly dependent
Practice Problems
1 —2

1.letvy = | —2 | and vy = 7| - Determine if {w1,va} is a basis for R3.
. 2 - N 03 [oa ind
s {v1,va} a basis for R*? &,
§faz A @ ) NO
No, duvest exist
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1 6 2 —4
2. letvy = | —-3]|,va= 2{,v3=|-2|,andvy= | —8|. Finda
4 —1 3 9

basis for the subspace W spanned by {v1,va,va,va}.

| b2 ’_; rrel ; /@ fjgmtﬂ

2
zj57w¥70000

)7”)—9 = 5[)m {\/ \/DL

1 0 8
3. Letvy = l{]] , Vg = |:1:| .and H = |:3:| :sin R » . Then every vector
0 0 0

in H is a linear combination of vy and vo because

8 1 0

gl =810 +51]1

0 0 0
Is {w1,va} abasis for H? M

Lo ind? Yes!

NG _ ,A‘ -
Span 52t 30 H?  gpen S0 = 6V QY

[]ééﬁm v, & H
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