
4.3 – Linearly Independent Sets; Bases Math 220 
  Warnock - Class Notes  

   
Recall the previous definitions of Linearly Independent and Linearly Dependent.  We 

are now going to think in terms of a Vector Space V, rather than just n . 

 

And recall that 

 

If a vector space is not just an n  with an easy A x 0, then we need Theorem 4 to 

show a linear dependence relation to prove linear dependence.   

Ex 1:  Discuss the linear dependence or independence of the following sets on 0,1C  
 

, 

the space of all continuous functions on 0 1t  . 

  sin ,cost t       sin cos ,sin2t t t  

 

 

 

 

 

 

V
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Ex 2:   What can we say about an invertible matrix A? 

 

 

 

The columns of the identity matrix, 
1 2
, ,... ne e e  is called the 

__________________ ___________ for n . 

 

Ex 3:   Determine whether  1 2 3
, ,v v v  forms a basis for 3 . 

1 2 3

2 1 3
4 , 1 , 0
4 2 2

     
     
     
     
     

   
 

v v v  

 

 

 

 

 

Do  1 2
,v v  form a basis for 2 ? 
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Ex 4:   

 

 

 

 

A basis is an “efficient” spanning set because it contains no unnecessary vectors.   

Ex 5:  Let  1 2 3
Span , ,H  v v v  as in Ex 3.  Show that    1 2 3 1 2

Span , , Span ,v v v v v  

1 2 3

2 1 3
4 , 1 , 0
4 2 2

     
     
     
     
     

   
 

v v v  

 

 

 

 

Proof: 
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We already know how to find a basis for the Nul A, as we saw that the row reduced 

system that describes the solutions of Nul A, is already linearly independent. 

However, finding a basis for Col A that doesn’t have unneeded vectors is our next step. 

Ex 6:  Find a Basis for Col B where 

51 2 3 4

1 0 3 0 4
0 1 4 0 5
0 0 0 1 2
0 0 0 0 0

B

 
 
  
  
 
  


 

 


b b b b b  

 

 

 

 

Ex 7:  Find a Basis for Col A where, A reduces to the matrix B in the previous example. 

1 0 3 1 2
0 1 4 3 1
3 2 1 8 6

2 3 6 7 9

A

 
 
 
 
 
  


 


  



 

Since A x 0 and the reduced echelon form B x 0 have the exact same solution sets, 

then their columns have the exact same dependence relationships.  Let’s check. 

 

 

 

 

 

WARNING:  

You must use the original pivot columns of A.  Why doesn’t  1 2 4
Col Span , ,A b b b ? 
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A Basis is basically the smallest spanning set possible.  Remove any vectors from it, and 

the set is no longer spanned, add any vectors to it, and it becomes linearly dependent. 
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