4.2 — Null Spaces, Column Spaces, Math 220
and Linear Transformations Warnock - Class Notes

Remember that a homogeneous system of equations
5X, +21x, +19x, =0
13%, +23x%, + 2%,=0
8x +14x,+ X%,=0
Can be written in matrix form as AX=0 where

The solution set is all the vectors Xthat satisfy

5 2l 1
A=y A7 R the matrix equation. We are going to name this
set of solutions the 1 | ] space
5 14| ,

Definition
The null space of an m x n matrix A, written as Nul A, is the set of all

solutions of the homogeneous equation Ax — 0. In set notation,

Nul A = {x:xisin R" and Ax = 0}

5
Ex 1: Let A be the matrix defined above. Determine whether the vector U=|—-3
belongs to the null space of A. 2
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Theorem 2
The null space ofan m @matrix Ais a subspace of R". Equivalently, the

set of all solutions to a system Ax = 0 of m homogeneous linear equations
in n unknowns is a subspace of R™.

Proof: O O & /\/(/t’ A ﬁeb g nce AO
Let 2,Ve NulA Am AV:?5

OA(U“V)— AV‘ +/A(\/~—\ = WHV/E }\/u\/A

)2 AUK:C5: 5 =» cuc/\MA
@A(C ) - /\/MJ/\ o Wzﬂ%éé Oﬂ[\ R

Ex 2: Let H be the set of vectors in R?’ whose coordinates a, b, and c satisfy the
equations a—3ab=5¢c and__ 2a+tG6b=/c

Show that H is a subspace of R3. (Create 2 dependence relations between them.)

a-2b-5¢=0 -2 -5 g
zarbh ~7e=0 [% “ ‘7] v :[2]
A -

H= NulA ,
o H 19 a subspace o IR

,} +)€
Ex 3: Find a spanning set for the null space of the matrix A= E') i 2 02] Ratki

| o -7 6] X, = Txy— bxu NulA € IR
o1 4 74 X;:‘LILX;f;Z?@‘

?:x} /et 1 Xy 2
| o

9 )
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Two properties of null spaces that contain nonzero vectors that we see from the
last example.

1. The spanning set is automatically //'/1 ca/ZVI Mol ep 540164‘6

—

0
2. The number of vectors in the spanning set of Nul A is equal to the number of
Yree variables  inthe equation AX=0.

Definition

The column space of an m x n matrix A, written as Col A, is the set of all

linear combinations of the columns of A. If A = [al -++  Q@y|, then
Col A = Span{ay,...,a,}

Theorem 3

The column space of an m x i matrix A is a subspace of R™.

Col A= {b:b = Ax for some x in R" }

Ex 4: Find a matrix A such that W =ColA.

(T bee 3 A ‘/
W;< 2b+ctd . b,c,dreal $ Bz

5c — 4d

(o A:%[g +C ;’l *A—’%

The column space of an m x n _matrix A is all of R™ if and only if the
equation Ax = b has a solution for each b in R™.
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1
4 |, answer the following.

-1

JW A
- /)
a) Find R that Null Ais a subspace of. A Y,

(A

Ex 5: Given the matrix A=

N
N P -
M~ O1 W

-~ D = -
AX=0 = xelR )
7t 0
b) Find RX that Col A is a subspace of.

iR; Jince Ca//MMfﬁ 0’$ A alc 11 R .

c) Find a nonzero vector in Null A.

- -5
Pl Y/Cﬂ( | O & ) %)' QJ; XL
2] S Y| Fe 1 X ==Ky A ARY
N 0o 02 PR
eI T B s
Null A= xp]=l 14 2 T2
0 | / 1)
oJ,L ][
d) Find a nonzero vector in Col A. _

L[]

: : N
4. s| 0 |
L3

e) Is ~ inthe Null A? in the Null A? NO
1 D /
R | +4 - L4/ ) / A 2 7
Aoy ,LS =g +y-0+F | 2| O ﬂéf CZ =
B e L N S A R Y, 5
f) Is|-1|in Col A? S -
) ST 7N D 3] =7
o)
A Eﬁ L/// g oo o ©0 X = K3 TDZ)(A%«#—}
|

l
2
| *3= %= Y
w;[jJﬁ[ :[—] ¥, = -2
X,;\:}
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Contrast Between Nul A and Col A for an m x i Matrix A

Nul A

[ Col A

1. Nul A is a subspace of [R™.

1. Col A is a subspace of ™.

2. Nul A is implicitly defined; that is, you
are given only a condition (Ax = 0) that
vectors in Nul A must satisfy.

2. Col A is explicitly defined; that is, you
are told how to build vectors in Col A.

3. It takes time to find vectors in Nul A.
Row operationson [A 0] are required.

3. It is easy to find vectors in Col A. The
columns of A are displayed; others are
formed from them.

4. There is no obvious relation between
Mul A and the entries in A.

4. There is an obvious relation between
Col A and the entries in A, since each
column of Ais in Col A.

5. A typical vector v in Nul A has the
property Av = 0.

5. A typical vector v in Col A has the
property that the equation Ax = v is
consistent.

6. Given a specific vector v, It is easy to tell
ifvisin Nul A Just compute A v.

6. Given a specific vector v, it may take
time to tell if v is in Col A. Row
operationson [A v] are required.

7.Nul A = {0} if and only if the equation
Ax = 0 has only the trivial solution.

7.Col A = R™ if and only if the
equation Ax = b has a solution for
every b in R™.

8. Nul A = {0} ifand only if the linear
transformation X — AX is one-to-one.

8. Col A = IR™ if and only if the linear
transformation x — Ax maps R™ onto
R™,

Definition
A linear transformation 7 from a vector space V into a vector space W is a rule that
assigns to each vector X in V a unique vector T (x) in W such that

The null space of a linear transformation is called the /(e//\ &/ ,suchthat T (u) =0.

() T(u+v)=T(u)+T(v) forallu,

vin V, and

(i) T (cu) = cT'(u) foralluin Vand all scalers c.

The fﬂ/\ﬁé of T is the set of all vectors in W of the form T (X) for some XeV.
.|i" T R"l
U ————
Z‘«::l—-” e ;
[s""‘o, - > e —
; .';;0—»—"_ BES———
V )
Kernel is a Range is a

subspace of V

subspace of W
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Ex 6:

(Calculus required) Let V be the vector space of all real-valued functions f defined on an interval
|a,b] with the property that they are differentiable and their derivatives are continuous functions on

la,b]. Let Wbe the vector space C [a,b] of all continuous functions on [a,b], and let
D:V — W be the transformation that changes fin Vinto its derivative f'. In calculus. two
simple differentiation rules are

D(f+9)=D(f)+D(g) and D(cf)=cD(f)

That is, D is a linear transformation. It can be shown that the kernel of D is the set of constant

functions on [a,b] and the range of D is the set W of all continuous functions on |a, b] .
et

Practice Problems
a

1. Let W = bl :a—3b—ec=0 ). Show intwo different ways that Wis a

c
subspace of w3, (Use two theorems.)

(ke ExA
D — 7 -H q G, \/\/: NJ\)A <L/ )

/\\ ,’ a u117} qce
S s

27 s - bmwﬂ ek

o

| ana
v L [ 5

7T -3 5 2 7
2 letA=|—-4 1 —5|.,.v= 1| ,and w = 6. Supposeyou
-5 2 —4 —1 -3

know that the equations Ax = v and Ax = w are both consistent. What can you
say about the equation Ax = v + w?

Ve GlA, S eColA Lol A s subpuce

b" \T/\+®(C La)A
L AR=viw 1 compirdent
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