<u>2.3 – Characteristics of</u> <u>Invertible Matrices</u>

Theorem 8 The Invertible Matrix Theorem

Let *A* be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given *A*, the statements are either all true or all false.

- a. A is an invertible matrix.
- b. A is row equivalent to the n imes n identity matrix.
- c. A has n pivot positions.
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x}\mapsto A\mathbf{x}\,$ is one-to-one.
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x}\mapsto A\mathbf{x}$ maps \mathbb{R}^n onto $\mathbb{R}^n.$
- j. There is an $n imes n\,$ matrix C such that CA=I.
- k. There is an n imes n matrix ${\it D}$ such that ${\it AD} = I.$
- I. A^T is an invertible matrix.

Theorem 5 from 2.2 could also make g. state <u>unique</u> solution.

If A and B are square matrices, and AB = I, then by j. and k. both A and B are invertible with $B = A^{-1}$ and $A = B^{-1}$.

Warnock - Class Notes

 $A \neq \frac{1}{A}$

The Invertible Matrix Theorem essentially divides the set of all $n \times n$ matrices into two disjoint classes:

two disjoint classes:
A has an Inverse
Invertible
Nonsingular
n pivot positions
Col A his ind

$$A\vec{x}=\vec{o}$$
 has only trivial soln
L.T. is onto R
 $A\vec{x}=\vec{o}$ has a roln, trivial soln
 $L.T. is linvertible
Col A span R
 $A\vec{x}=\vec{o}$ has a roln, tbern
 $A\vec{x}=\vec{b}$ has a roln, tbern
 $A\vec{x}=\vec{b}$ has a roln, tbern
 $L.T. is linvertible
 $A\vec{x}=\vec{b}$ has a roln, tbern
 $A\vec{x}=\vec{b}$ has a roln, the end
 $A\vec{x}=\vec{b}$ has a roln thas a roln the end
 $A\vec{x}=\vec{b}$ has a roln the end
 $A\vec{x}=\vec{b}$$$

Be careful, the Invertible Matrix Theorem only applies to $\frac{59uare}{2000}$ matrices.

If A is invertible, we can also think about $A^{-1}A \overrightarrow{\chi} = \overrightarrow{\chi}$ in light of linear transformations.

Theorem 9

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function satisfying equations (1) and (2).

Ex 2: What can be said about a one-to-one linear transformation $T: \mathbb{R}^N \to \mathbb{R}^N$? Tis one-to-one $\neq \Rightarrow$ Col A are lin independent $f \Rightarrow A$ is invertible $f \Rightarrow T$ is invertible 2. Suppose that for a certain $n \times n$ matrix A, statement (g) of the Invertible Matrix Theorem is *not* true. What can you say about equations of the form $A\mathbf{x} = \mathbf{b}$?

At least one b has no solution

3. Suppose that A and B are $n \times n$ matrices and the equation $AB\mathbf{x} = \mathbf{0}$ has a nontrivial solution. What can you say about the matrix AB?

