

 $B = B(\mathcal{I}) = B(A\mathcal{L}) = (BA)\mathcal{L} = \mathcal{I}\mathcal{L} = \mathcal{L}$ -- C
: Inverse is Unique

Yes, so denote the inverse with $A^{-1}\;$ and

 \searrow

$$
A^{-1}A = I \quad \text{and} \quad AA^{-1} = I
$$

A matrix that is **NOT** invertible is called a __________________________ matrix while a matrix that **IS** invertible is called a _*n_on_5 i_n_q_kl_aV* _________ matrix.

Ex 1: If
$$
A = \begin{bmatrix} -2 & -3 \ 3 & 5 \end{bmatrix}
$$
 and $C = \begin{bmatrix} -5 & -3 \ 3 & 2 \end{bmatrix}$, verify that $C = A^{-1}$.
\n
$$
AC = \begin{bmatrix} -2 & -3 \ 3 & 5 \end{bmatrix} \begin{bmatrix} -5 & -5 \ 3 & 2 \end{bmatrix} = \begin{bmatrix} 10 - 9 & 6 - 6 \ -15 + 15 & -9 + 10 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 3 & 2 \end{bmatrix}
$$
\n
$$
CA = \begin{bmatrix} -5 & -3 \ 3 & 2 \end{bmatrix} \begin{bmatrix} -2 & -3 \ 3 & 5 \end{bmatrix} = \begin{bmatrix} 10 - 9 & 15 - 15 \ -6 + 6 & -9 + 10 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 &
$$

Theorem 4 Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and $\left| \begin{array}{cc} A^{-1}=\dfrac{1}{ad-bc}\left[\begin{array}{cc} d & -b \ -c & a \end{array} \right] \end{array} \right|$

If $ad - bc = 0$, then A is not invertible.

This value $ad{\rm -}bc$ is called the $__{{\rm c}}_{{\rm c}}_{{\rm c}}_{{\rm c}}$ and we write

 $\det A = ad - bc$ So theorem 4 states that $2x\lambda$ matrix is invertible iff $\frac{\partial e t}{\partial x^2}$ iff $\frac{\partial e t}{\partial x^2}$.
(if and only if)

det $A = 15 - (-14) = 29$ $\lceil 2 \rceil$ $13 - 71$ $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ **Ex 2:** Find the inverse of *A* $=$ $\begin{array}{ccc} \begin{array}{ccc} \end{array} & \end{array}$ $\vert 25 \vert$ $\vert \sim$ / \vert $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $A^{-1} = \frac{1}{29} \left[\frac{5}{2} \frac{7}{3} \right] = \left[\frac{3}{4} \frac{7}{2} \right]$

Theorem 5

If A is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has $A^{-1}A \geq z \overline{A}^{\prime} \overline{b}$ the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof: Let
$$
\vec{b} \in \mathbb{R}^{n}
$$
, does $A\vec{x} = \vec{b}$ have a
\nSolution?
\n $A \vec{x} = A(\vec{A}^{\top}\vec{b}) = (AA^{\top})\vec{b} = \vec{b} = \vec{b}$ so that $\vec{x} = A^{\top}\vec{b} = A^{\top}\vec{b}$
\n $A\vec{x} = A(\vec{A}^{\top}\vec{b}) = (AA^{\top})\vec{b} = \vec{b} = \vec{b} \Rightarrow$ so $\vec{b} = A^{\top}\vec{b} = A^{\top}\vec{b}$
\n $u_{\text{n,}g$ denotes the
\nlet \vec{a} be another solution to $A\vec{x} = \vec{b}$
\n $A\vec{a} = \vec{b} \Rightarrow \vec{A}^{\top}A\vec{a} = \vec{A}^{\top}\vec{b}$
\n $\Rightarrow \vec{A} \vec{a} = \vec{A}^{\top}\vec{b} = \vec{x}$
\n $\vec{a} = A^{\top}\vec{b} = \vec{x}$
\n $\vec{a} = A^{\top}\vec{b} = \vec{x}$

 $\left(A^{-1}=\begin{bmatrix} -5 & -3 \\ 3 & 2 \end{bmatrix}\right)$ $=\begin{bmatrix} -2 & -3 \\ 2 & 5 \end{bmatrix}$ from Ex 1 $\begin{bmatrix} A^{-1} = \begin{bmatrix} -5 & -3 \\ 2 & 2 \end{bmatrix}$ **Ex 3:** Use the inverse of the matrix $A = \begin{bmatrix} -2 & -3 \\ 2 & 5 \end{bmatrix}$ $\begin{bmatrix} -2 & -3 \end{bmatrix}$. $A^{-1} = \begin{vmatrix} -3 & -3 \\ 3 & 2 \end{vmatrix}$ $A = \begin{vmatrix} -2 & -3 \\ 3 & 5 \end{vmatrix}$ $\begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix}$ f $\begin{bmatrix} 3 & 5 \end{bmatrix}$ $-2x_1 - 3x_2 = 5$ $2x_1 - 3x_2 = 5$ $x_1 - 3x$ to solve the system $\frac{-2x_1 - 3x_2}{2}$ $3x_1 + 5x_2 = -7$ $x_1 + 5x$ $+5x^{2} = -7$ $x_1 + 3x_2$ $\begin{bmatrix} -2 & -3 & 5 \\ 3 & 5 & -7 \end{bmatrix}$

Theorem 6

a. If A is an invertible matrix, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

b. If A and B are $n \times n$ invertible matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is,

$$
(AB)^{-1}=B^{-1}A^{-1}\,
$$

c. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . That is,

Proofs:

 $(A B)^{-1} = B^{-1} A^{-1}$

From Theorem 6b, we can extrapolate to the following.

The product of $n \times n$ invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order. $(A BCD)^{-1} = D^{-1}C^{-1} B^{-1}A^{-1}$

(Read pages 108-109 on Elementary Matrices)

We are going to look at finding the inverse of a matrix with a slightly different approach than this text.

If an $n \times n$ matrix *A* has an inverse, let's call that matrix *B*. Then

$$
AB = I
$$

This can be written as
 $\left[\begin{array}{ccc} \overrightarrow{A} & \overrightarrow{b} & \overrightarrow{A} & \overrightarrow{b} \\ \overrightarrow{A} & \overrightarrow{b} & \overrightarrow{A} & \overrightarrow{b} & \overrightarrow{A} & \overrightarrow{b} \\ \end{array}\right] = \left[\begin{array}{ccc} \overrightarrow{e} & \overrightarrow{e} & \overrightarrow{e} & \overrightarrow{e} \\ \overrightarrow{e} & \overrightarrow{e} & \overrightarrow{e} & \overrightarrow{A} & \overrightarrow{A} \end{array}\right]$

We can think of this as many systems, where each solution forms the columns vectors of our matrix B. \rightarrow \rightarrow

$$
A\vec{b}_1 = \vec{e}_1
$$

\n
$$
A\vec{b}_2 = \vec{e}_2
$$

\nWe could solve each one of these individually, or stack them all together.
\n**Ex 4:** Find the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}$.
\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}
$$

Theorem 7

An $n \times n$ matrix A is invertible if and only if A is row equivalent to $I_n, \;$ and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .

$$
[\mathcal{A},\mathcal{I}]\overset{\text{ref}}{\Rightarrow} [\mathcal{I}:\mathcal{A}^{-1}]
$$

Algorithm for Finding A^{-1}

Row reduce the augmented matrix $[A \ I]$. If A is row equivalent to I, then $[A \ I]$ is row equivalent to $[I \quad A^{-1}]$. Otherwise, A does not have an inverse.

Ex 5: Find the inverse of the matrix
$$
A = \begin{bmatrix} 1 & -2 & -1 \ -1 & 5 & 6 \ 5 & -4 & 5 \end{bmatrix}
$$
, if it exists.
\n(Do this by hand – more practice.)
\n
$$
\begin{bmatrix}\n1 & -2 & -1 & | & 0 & 0 \\
-1 & 5 & 6 & 0 & | & 0 \\
-1 & 5 & 6 & 0 & | & 0 \\
5 & -4 & 5 & 0 & 0 & | & -5 & | & 0 \\
5 & -4 & 5 & 0 & 0 & | & -5 & | & 5 \\
5 & -4 & 5 & 0 & 0 & | & -5 & | & 5 \\
5 & -4 & 5 & 0 & 0 & | & -5 & | & 5 \\
5 & -4 & 5 & 0 & 0 & | & -5 & | & 5 \\
5 & -4 & 5 & 0 & 0 & | & -5 & | & 5 \\
5 & -4 & 5 & 0 & 0 & | & -5 & | & 5 \\
5 & -4 & 5 & 0 & 0 & | & -5 & | & 5 \\
5 & -4 & 5 & 0 & 0 & | & 5 & | & 5 \\
5 & 0 & 0 & 0 & | & -5 & | & 5 \\
5 & 0 & 0 & 0 & | & -5 & | & 5\n\end{bmatrix}
$$