2.1 – Matrix Operations **Math 220**

If *A* is an $m \times n$ matrix with m rows and n columns, then the entry in the ith row and jth column is denoted by $\frac{q_{i,e}}{q_{i,e}}$ and is called the $\frac{1}{q_{i,e}}$ th $\frac{1}{q_{i,e}}$.

Column
\n $\begin{bmatrix}\n a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn}\n \end{bmatrix}\n = A$ \n
\n $\begin{bmatrix}\n a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn}\n \end{bmatrix}\n = A$ \n
\n $\begin{bmatrix}\n a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn}\n \end{bmatrix}$ \n
\n $\begin{bmatrix}\n a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{mn} & \cdots & a_{mn}\n \end{bmatrix}$ \n
\n $\begin{bmatrix}\n a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{mn} & \cdots & a_{mn}\n \end{bmatrix}$ \n
\n $\begin{bmatrix}\n a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{mn} & \cdots & a_{mn}\n \end{bmatrix}$ \n
\n $\begin{bmatrix}\n a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{mn} & \cd$

The $\frac{Z}{Z}$ $\frac{e}{V}$ $\frac{D}{Z}$ matrix has all zeros in all of its entries and is written just as 0.

Two matrices are $\frac{eqn \times q}{\sim}$ $\frac{1}{\sim}$ if they are the same $\frac{1}{\sim}$ if they are the same $\frac{1}{\sim}$ and the $\textsf{corresponding}_\mathcal{L}\, \kappa\, \textsf{c}^{\textsf{c}}\, \textsf{c$ a_{ij} + b_{ij} The __ $\frac{54}{M}$ \sim _____ of two matrices __ $\frac{147}{M}$ is the __ $\frac{7}{M}$ of their corresponding $\sqrt{e^{\lambda V(z)}}$. Thus, two matrices can only be \sqrt{d} \sqrt{d} \sqrt{e} if their $\frac{1}{2}$ $\sqrt{2\epsilon}$ ($\sqrt{2}$ $\sqrt{2}$) is the same. Otherwise, the sum is not defined.

Ex 1: Given
$$
A = \begin{bmatrix} 2 & -1 & 0 \ -3 & 3 & -2 \end{bmatrix}
$$
, $B = \begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 3 \ 2 & 1 \end{bmatrix}$.

Find the following, if defined.

a) $A+B$
 $\begin{bmatrix} \lambda+1 & -1+\lambda & 0 & \lambda+3 \\ -3+\mu & 3 & \lambda+5 & -\lambda+6 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3 \\ 1 & 8 & \lambda+1 \end{bmatrix}$

b) B+C

$$
Notdefined
$$

 $(dx3 \notin 2 \times 2)$

Theorem 1

Let A, B, and C be matrices of the same size, and let r and s be scalars.

a. $A + B = B + A$ d. $r(A + B) = rA + rB$ b. $(A + B) + C = A + (B + C)$ e. $(r + s) A = rA + sA$ c. $A + 0 = A$ f. $r(sA) = (rs) A$

Matrix Multiplication

Definition

If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\mathbf{b}_1,\ldots,\mathbf{b}_p$, then the product AB is the $m \times p$ matrix whose columns are $A\mathbf{b}_1,\ldots,A\mathbf{b}_p$. That is,

$$
AB = A[\mathbf{b}_1 \quad \mathbf{b}_2 \quad \cdots \quad \mathbf{b}_p] = [A\mathbf{b}_1 \quad A\mathbf{b}_2 \quad \cdots \quad A\mathbf{b}_p]
$$

Ex 3: Given
$$
A = \begin{bmatrix} 2 & -1 & 0 \ -3 & 3 & -2 \end{bmatrix}
$$
 and $C = \begin{bmatrix} 4 & 3 \ 2 & 1 \end{bmatrix}$, compute CA .
\n
$$
Ca_{1} = \begin{bmatrix} 4 & 3 \ \frac{3}{4} & 1 \end{bmatrix} \begin{bmatrix} 2 \ -3 \end{bmatrix} \qquad Ca_{2} = \begin{bmatrix} 4 & 3 \ \frac{3}{4} & 1 \end{bmatrix} \begin{bmatrix} -1 \ 3 \end{bmatrix} \qquad Ca_{3} = \begin{bmatrix} 4 & 3 \ \frac{3}{4} & 1 \end{bmatrix} \begin{bmatrix} 0 \ -2 \end{bmatrix} = \begin{bmatrix} -6 \ \frac{3}{4} & 1 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 4(2) + 1(-3) \end{bmatrix} = \begin{bmatrix} -1 \ 1 \end{bmatrix} \qquad = \begin{bmatrix} 5 \ 1 \end{bmatrix} \qquad CA = \begin{bmatrix} -1 & 5 & -6 \ 1 & 1 & -2 \end{bmatrix}
$$

Ex 4: Given
$$
A = \begin{bmatrix} 2 & -1 & 0 \ -3 & 3 & -2 \end{bmatrix}
$$
 and $C = \begin{bmatrix} 4 & 3 \ 2 & 1 \end{bmatrix}$, is the matrix AC defined?
\n $A \overline{C}_1 = \begin{bmatrix} 2 & 1 & 0 \ -3 & 3 & -2 \end{bmatrix} \begin{bmatrix} 4 \ 2 \end{bmatrix}$ $A \overline{C}_1$ is not defined?

Row-Column Rule for Computing AB

If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B. If $(AB)_{ii}$ denotes the (i, j) -entry in AB, and if A is an $m \times n$ matrix, then

Theorem 2

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

- a. $A(BC) = (AB)C$ (associative law of multiplication)
- b. $A(B+C) = AB + AC$ (left distributive law)
- c. $(B+C)A=BA+CA$ (right distributive law)

$$
r(AB) = (rA)B = A(rB)
$$

- for any scalar r
- e. $I_m A = A = A I_n$ (identity for matrix multiplication)

previous

While the following properties are all true, be careful, the $\frac{\mathcal{L}u_{M}}{\mathcal{L}u_{M}}$ property is not true, that is, $AB \overrightarrow{AB} BA$.

Ex 6: Let
$$
A = \begin{bmatrix} -2 & 1 \\ 4 & -3 \end{bmatrix}
$$
 and $B = \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix}$. Show that these two matrices do not

commute. That is, verify that $AB \neq BA$.

$$
AB = \begin{bmatrix} 1 & 9 \\ -5 & -23 \end{bmatrix}
$$
 $prod_{equal}$

$$
BA = \begin{bmatrix} -10 & 7 \\ 14 & -10 \end{bmatrix}
$$

Warnings:

1. In general, $AB \neq BA$.

2. The cancellation laws do not hold for matrix multiplication. That is, if $AB=AC, \,$ then it is not true in general that $B=\overline{C}. \,$ (See Exercise 10.)

3. If a product AB is the zero matrix, you cannot conclude in general that either $A = 0$ or $B = 0$. (See Exercise 12.)

10. Let
$$
A = \begin{bmatrix} 2 & -3 \ -4 & 6 \end{bmatrix}
$$
, $B = \begin{bmatrix} 8 & 4 \ 5 & 5 \end{bmatrix}$, and $C = \begin{bmatrix} 5 & -2 \ 3 & 1 \end{bmatrix}$.

Verify that $AB = AC$ and yet $B \neq C$.

$$
AB = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 8 & \frac{4}{5} \\ 5 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix}
$$

$$
AC = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix}
$$

 $AB=AC$
 BAC

12. Let $A = \begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix}$. Construct a 2×2 matrix B such that AB is the zero matrix. Use two different nonzero columns for B.

$$
\begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
$$

If *A* is an $n\times n$ matrix and if *k* is a positive integer, then $A^k =$

Given an $m\!\times\!n$ matrix A, then the $__$ $\frac{t\vee\! a\wedge\!\circ\!\rho\not\circ\!\circ\!\mathcal{E}}{\cdots}$ of A is the $n\!\times\!m$ matrix, denoted by ________ whose ____________________ are formed by the corresponding $\swarrow \circ \vee \circ \bullet$ of *A*.

Ex 7: Let
$$
A = \begin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}
$$
, $B = \begin{bmatrix} 1 & 3 \ 5 & 7 \ 2 & 4 \end{bmatrix}$, and $C = \begin{bmatrix} 2 & 1 & 0 \ -3 & -4 & -5 \end{bmatrix}$. Find
\n
$$
A^{T} = \begin{bmatrix} 1 & 3 \ 2 & 4 \end{bmatrix} \qquad B^{T} = \begin{bmatrix} 1 & 5 & 2 & 6 \ 3 & 7 & 7 & 9 \end{bmatrix} \qquad C^{T} = \begin{bmatrix} 2 & -3 \ 1 & -4 \ 0 & -5 \end{bmatrix}
$$
\n
$$
\qquad \qquad (n \text{ of ice diagonal entries along)}
$$

Theorem₃

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

a. $(A^T)^T = A$ c. For any scalar r, $(rA)^T = rA^T$ b. $(A + B)^{T} = A^{T} + B^{T}$ d. $(AB)^T = B^T A^T$

Practice Problems

1. Since vectors in \mathbb{R}^n may be regarded as $n \times 1$ matrices, the properties of transposes in Theorem 3 apply to vectors, too. Let

2. Let A be a 4×4 matrix and let **x** be a vector in \mathbb{R}^4 . What is the fastest way to compute A^2x ? Count the multiplications.

3. Suppose A is an $m \times n$ matrix, all of whose rows are identical. Suppose B is an $n \times p$ matrix, all of whose columns are identical. What can be said about the entries in AB ?