# <u>2.1 – Matrix Operations</u>



If A is an  $m \times n$  matrix with m rows and n columns, then the entry in the ith row and jth column is denoted by  $\underline{q_{ij}}$  and is called the  $\underline{(i, j)}$  th - entry.

Column  

$$\begin{bmatrix}
a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m1} & \cdots & a_{mj} & \cdots & a_{mn}
\end{bmatrix} = A$$
The diagonal entries are  $a_{11}, a_{22}, a_{33}, \cdots$  and they form the Main  
diagonal.  
A Diagonal Matrix is a square matrix  $(n \times n)$  whose non-diagonal  
entries are all Zero. The Identity matrix  $I_n$  is a  
diagonal matrix with 15 down the diagonal.  
The Zero matrix has all zeros in all of its entries and is written just as 0

Two matrices are <u>equal</u> if they are the same <u>size</u> and the corresponding <u>entries</u> are <u>equal</u>. The <u>sum</u> of two matrices <u>A+B</u> is the <u>sum</u> of their corresponding <u>entries</u>. Thus, two matrices can only be <u>added</u> if their <u>size</u> (mxn) is the same. Otherwise, the sum is not defined.

**Ex 1:** Given 
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -3 & 3 & -2 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$  and  $C = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ .

Find the following, if defined.

a) A+B $\begin{bmatrix} 2+1 & -1+2 & 0+3 \\ -3+4 & 3+5 & -2+6 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 3 \\ 1 & 8 & 4 \end{bmatrix}$ 

b) 
$$B+C$$
 Not defined  
(2×3  $\notin$  2×2)

The scalar multiple rA is the matrix  
whose entries are r times each entry of A.  
The matrix -A represents (-1) A and A-B is the same as A+(-1)B.  
**Ex 2:** Given 
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -3 & 3 & -2 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ . Find  
a) 2A  
 $\begin{bmatrix} 4 & -2 & 0 \\ -6 & 6 & 4 \end{bmatrix}$  b) *B*-2A  
 $\begin{bmatrix} -3 & 4 & 3 \\ 10 & -1 & 10 \end{bmatrix}$ 

#### Theorem 1

Let A, B, and C be matrices of the same size, and let r and s be scalars.

a. A + B = B + Ab. (A + B) + C = A + (B + C)c. A + 0 = Ad. r(A + B) = rA + rBe. (r + s)A = rA + sAf. r(sA) = (rs)A

## **Matrix Multiplication**

#### Definition

If A is an  $m \times n$  matrix, and if B is an  $n \times p$  matrix with columns  $\mathbf{b}_1, \ldots, \mathbf{b}_p$ , then the product AB is the  $m \times p$  matrix whose columns are  $A\mathbf{b}_1, \ldots, A\mathbf{b}_p$ . That is,

$$AB = A[\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_p] = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_p]$$

Ex 3: Given 
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -3 & 3 & -2 \end{bmatrix}$$
 and  $C = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ , compute CA.  
 $C\mathbf{a}_1 = \begin{bmatrix} 4 & 3 \\ -3 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ 
 $C\mathbf{a}_2 = \begin{bmatrix} 4 & 3 \\ -3 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ 
 $C\mathbf{a}_3 = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -6 \\ -2 \end{bmatrix}$ 
 $= \begin{bmatrix} 4(z) + 3(-3) \\ 2(z) + 1(-3) \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ 
 $= \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ 
 $CA = \begin{bmatrix} -1 & 5 & -6 \\ 1 & -2 \end{bmatrix}$ 

Ex 4: Given 
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -3 & 3 & -2 \end{bmatrix}$$
 and  $C = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ , is the matrix AC defined?  
 $A = \begin{bmatrix} 2 & -1 & 0 \\ -3 & 3 & -2 \end{bmatrix}$  and  $C = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ , is the matrix AC defined?  
 $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 2 \end{bmatrix}$   $A$ 

#### Row–Column Rule for Computing AB

If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row *i* of A and column *j* of B. If  $(AB)_{ij}$  denotes the (i,j) -entry in AB, and if A is an  $m imes n\,$  matrix, then



### Theorem 2

Let A be an  $m \times n$  matrix, and let B and C have sizes for which the indicated sums and products are defined.

- a. A(BC) = (AB)C (associative law of multiplication)
- b. A(B+C) = AB + AC (left distributive law)
- c. (B+C)A = BA + CA (right distributive law)

$$r(AB) = (rA)B = A(rB)$$

for any scalar r

e.  $I_m A = A = A I_n$ (identity for matrix multiplication)

While the following properties are all true, be careful, the <u>Cummative</u> property is not true, that is,  $AB \longrightarrow BA$ .

**Ex 6:** Let 
$$A = \begin{bmatrix} -2 & 1 \\ 4 & -3 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix}$ . Show that these two matrices do not

commute. That is, verify that  $AB \neq BA$ .

$$AB = = \begin{bmatrix} 1 & 9 \\ -5 & -23 \end{bmatrix} \text{ pot} equal!$$

$$BA = = \begin{bmatrix} -10 & 7 \\ -14 & -12 \end{bmatrix}$$

# Warnings:

**1.** In general,  $AB \neq BA$ .

2. The cancellation laws do not hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C. (See Exercise 10.)

3. If a product AB is the zero matrix, you cannot conclude in general that either A = 0 or B = 0. (See Exercise 12.)

**10.** Let 
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix}$$
,  $B = \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix}$ , and  $C = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$ .

Verify that AB = AC and yet  $B \neq C$ .

$$AB = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix}$$
$$AC = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 5 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix}$$

AB=AC BXC

**12.** Let  $A = \begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix}$ . Construct a  $2 \times 2$  matrix *B* such that *AB* is the zero matrix. Use two different nonzero columns for *B*.

$$\begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -4 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Given an  $m \times n$  matrix A, then the <u>transpose</u> of A is the  $n \times m$  matrix, denoted by <u>A</u> whose <u>columns</u> are formed by the corresponding <u>rows</u> of A.

Ex 7: Let 
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 2 & 4 \\ 6 & 8 \end{bmatrix}, \text{ and } C = \begin{bmatrix} 2 & 1 & 0 \\ -3 & -4 & -5 \end{bmatrix}.$$
 Find  
 $A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \qquad B^{T} = \begin{bmatrix} 1 & 5 & 2 & 6 \\ 3 & 7 & 4 & 8 \end{bmatrix} \qquad C^{T} = \begin{bmatrix} 2 & -3 \\ 1 & -4 \\ 0 & -5 \end{bmatrix}$ 
(notice diagonal entries didit change)

#### Theorem 3

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

a.  $(A^T)^T = A$ b.  $(A+B)^T = A^T + B^T$ c. For any scalar r,  $(rA)^T = rA^T$ d.  $(AB)^T = B^TA^T$ 

# Practice Problems

1. Since vectors in  $\mathbb{R}^n\,$  may be regarded as  $n\times 1\,$  matrices, the properties of transposes in Theorem 3 apply to vectors, too. Let



**2.** Let *A* be a  $4 \times 4$  matrix and let **x** be a vector in  $\mathbb{R}^4$ . What is the fastest way to compute  $A^2\mathbf{x}$ ? Count the multiplications.

**3.** Suppose *A* is an  $m \times n$  matrix, all of whose rows are identical. Suppose *B* is an  $n \times p$  matrix, all of whose columns are identical. What can be said about the entries in *AB*?