1.9 - Matrix of a Linear Transformation Mai

Warnock - Class Notes

Ex 1: The columns of $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose T is a linear

transformation from $\mathbb{R}^2 \to \mathbb{R}^3$ such that $T(\mathbf{e}_1) = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$ and $T(\mathbf{e}_2) = \begin{bmatrix} 0 \\ -1 \\ 9 \end{bmatrix}$.

Find a formula for the image of an arbitrary $\mathbf{x} \in \mathbb{R}^2$. $\left(\overrightarrow{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \chi_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \chi_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$

$$T(\vec{x}) = T(x_1 \vec{e}_1 + x_2 \vec{e}_2)$$

$$= x_1 T(\vec{e}_1) + x_2 T(\vec{e}_2)$$

$$= x_1 \left[\frac{3}{2} + x_2\right] + x_2 \left[\frac{3}{2} + x_1\right] = \left[\frac{3}{2} \times 1 + 0 \times 2 \times 1$$

This shows us that knowing $T(\mathbf{e}_1)$ and $T(\mathbf{e}_2)$ can give us $T(\mathbf{x})$ for any \mathbf{x} .

$$T(\mathbf{x}) = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A\mathbf{x}$$

Theorem 10

Let $T:\mathbb{R}^n o\mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

In fact, A is the $m \times n$ matrix whose j th column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbb{R}^n :

$$A = [T(\mathbf{e}_1) \quad \cdots \quad T(\mathbf{e}_n)] \tag{3}$$

This Matrix A is called the <u>Standard matrix</u> For the linear transformation T

Ex 2: Find the standard matrix A for the contraction transformation $T(\mathbf{x}) = \frac{1}{2}\mathbf{x}$

for
$$\mathbf{x} \in \mathbb{R}^2$$
. $T(\hat{e}_i) = T[\hat{o}] = [\hat{o}]$ $T(\hat{e}_a) = T[\hat{o}] = [\hat{o}]$ $A = \begin{bmatrix} 1/2 & O \\ O & 1/2 \end{bmatrix}$

Ex 3: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin through the angle φ , with counterclockwise rotation for a positive angle (see the figure). Find the standard matrix A of this transformation.

$$T(\hat{e}_i) = T\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \phi \\ \sin \phi \end{bmatrix}$$

$$T(\hat{e}_i) = T\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin \phi \\ \cos \phi \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

Ex 4: Observe and discuss in the interactive ebook: (also, pages 74-76)

- Reflection
- Contraction & Expansion
- Shear
- Projection

Definition

A mapping $T:\mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n .

Another way of saying this is that the $\underline{\mathit{Vange}}$ of T is all of the $\underline{\mathit{codomain}} \, \mathbb{R}^m$

Definition

A mapping $T:\mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of at most one **x** in \mathbb{R}^n .

Theorem 11

Let $T:\mathbb{R}^n o\mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof: (\Rightarrow) Assume T is 1-to-1. $T(\hat{o})=\hat{o}$ (LT) $T(\hat{x})=\hat{o}\Rightarrow \hat{x}=\hat{o}$ (1-to-1) Q.E.D. (\Rightarrow) $T(\hat{x})=\hat{o}$ has only the trivial solution.

Assume T is not 1+to-1. Then image \hat{b} comes from two vectors $\hat{u} \notin \hat{v}$, $\hat{u} \neq \hat{v}$. $T(\hat{u}-\hat{v})=T(\hat{u})-T(\hat{v})=\hat{b}-\hat{b}=\hat{o}\Rightarrow \hat{u}-\hat{v}=\hat{o}$ Therefore, by contradiction, $\hat{u}=\hat{v}$

Theorem 12

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then:

- a. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m ;
- b. T is one-to-one if and only if the columns of A are linearly independent.

Proof: a) Column, of A span \mathbb{R}^{M} \Rightarrow every $\Rightarrow \in \mathbb{R}^{n}$ has a solution for $A\hat{x} = \hat{b}$ \Rightarrow every \Rightarrow in $T(\hat{x}) = \hat{b}$ has a solution \Rightarrow T map, \Rightarrow onto \Rightarrow the same thing

b) \Rightarrow \Rightarrow 1 = 0 and \Rightarrow 1 = 0 represent the same thing \Rightarrow T is \Rightarrow 1 + tol \Rightarrow 1 \Rightarrow 2 = 0 has only trivial solution, \Rightarrow 0

Tis onto RM A has m pivot positions

Ex 5: Let T be the linear transformation whose standard matrix is below (2 cases). Determine whether they are "onto \mathbb{R}^3 " and/or a one-to-one mapping.

a)
$$A = \begin{bmatrix} 1 & -2 & 3 & 1 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$
 b) $B = \begin{bmatrix} 1 & -2 \\ 2 & -4 \\ 3 & 5 \end{bmatrix}$

	Why?	Why?
onto \mathbb{R}^3 ?	Yes, 3 pivot positions	No, Can't span R3
	Yes, 3 pivot positions span R	No, Can't span R³ (only 2 vectors)
one-to-one?	No, free variables	Yes, linearly independent
	No, free variables (linear dependence)	Yes, linearly independent
Veithers ($\begin{bmatrix} 1 - 2 \\ 2 & -4 \\ 3 & -6 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	(not scalar multiple) (2 vectors)