1.9 – Matrix of a Linear Transformation **Math 220**

Warnock - Class Notes

Ex 1: The columns of
$$
I_2 = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}
$$
 are $\mathbf{e}_1 = \begin{bmatrix} 1 \ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \ 1 \end{bmatrix}$. Suppose *T* is a linear
transformation from $\mathbb{R}^2 \rightarrow \mathbb{R}^3$ such that $T(\mathbf{e}_1) = \begin{bmatrix} 3 \ 2 \ -5 \end{bmatrix}$ and $T(\mathbf{e}_2) = \begin{bmatrix} 0 \ -1 \ 9 \end{bmatrix}$.
Find a formula for the image of an arbitrary $\mathbf{x} \in \mathbb{R}^2$.

$$
\begin{aligned}\n\overrightarrow{\chi} &= \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \chi_1 \begin{bmatrix} 1 \ 0 \end{bmatrix} + \chi_2 \begin{bmatrix} 0 \ 1 \end{bmatrix} \\
\overrightarrow{\chi} &= \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \chi_1 \begin{bmatrix} 1 \ 0 \end{bmatrix} + \chi_2 \begin{bmatrix} 0 \ 1 \end{bmatrix} \\
\overrightarrow{\chi} &= \chi_1 \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} + \chi_2 \begin{bmatrix} \overrightarrow{\varphi} \\ \overrightarrow{\varphi} \end{bmatrix} \\
\overrightarrow{\chi} &= \chi_1 \begin{bmatrix} \frac{2}{3} \\ -\frac{2}{3} \end{bmatrix} + \chi_2 \begin{bmatrix} \overrightarrow{\varphi} \\ \overrightarrow{\varphi} \end{bmatrix} = \begin{bmatrix} \frac{3}{3}x_1 + 0x_2 \\ \frac{2}{3}x_1 - x_2 \\ \frac{2}{3}x_1 + \overrightarrow{\varphi} \chi_2 \end{bmatrix} = \begin{bmatrix} \frac{3}{3} & 0 \\ \frac{2}{3} & -1 \\ -\overrightarrow{\varphi} \end{bmatrix} \begin{bmatrix} \overrightarrow{\varphi} \\ \overrightarrow{\varphi} \end{bmatrix}.\n\end{aligned}
$$

This shows us that knowing $T\!\left(\mathbf{e}_1\right)$ and $T\!\left(\mathbf{e}_2\right)$ can give us $T\!\left(\mathbf{x}\right)$ for any \mathbf{x} .

$$
T(\mathbf{x}) = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2)] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A \mathbf{x}
$$

Theorem 10

Theorem 10
Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$
T(\mathbf{x}) = A \mathbf{x} \quad \text{for all } \mathbf{x} \text{ in } \mathbb{R}^n
$$

In fact, A is the $m \times n$ matrix whose *j* th column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the *j* th column of the identity matrix in \mathbb{R}^n :

$$
A = [T(\mathbf{e}_1) \quad \cdots \quad T(\mathbf{e}_n)] \tag{3}
$$

This Matrix A is called the $\frac{1}{2}$ by a and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ Tor the linear transformation 1

Ex 2: Find the standard matrix *A* for the contraction transformation
$$
T(\mathbf{x}) = \frac{1}{2}\mathbf{x}
$$

for $\mathbf{x} \in \mathbb{R}^2$. $T(\vec{e}_i) = T\begin{bmatrix} 1/2 \\ 0/2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$
$$
T(\vec{e}_\lambda) = T\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

$$
A = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}
$$

Ex 3: Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin through the angle φ , with counterclockwise rotation for a positive angle (see the figure). Find the standard matrix *A* of this transformation.

Ex 4: Observe and discuss in the interactive ebook: *(also, pages 74-76)*

- Reflection
- Contraction & Expansion
- Shear
- Projection

Definition

A mapping $T:\mathbb{R}^n\to\mathbb{R}^m$ is said to be onto \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n .

Another way of saying this is that the $\sqrt{q}nq\mathcal{L}$ of T is all of the $\sqrt{q}d$ α α α γ \mathbb{R}^m

Definition

A mapping $T:\mathbb{R}^n\to\mathbb{R}^m$ is said to be one-to-one if each **b** in \mathbb{R}^m is the image of at most one **x** in \mathbb{R}^n .

Theorem 11

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Proof:
$$
(\exists)
$$
 Assume T is $|+t-1$. $T(\vec{0}) = \vec{0}$ (LT)
\n $T(\vec{x}) = \vec{0} \Rightarrow \vec{x} = \vec{0}$ (1-to-1) $Q.E.D.$
\n $(\forall=)$ $T(\vec{x}) = \vec{0}$ has only the trivial solution.
\n A sum T is not $1+t-1$. Then image \vec{b} comes
\nfrom two vectors $\vec{u} \notin \vec{v}$, $\vec{u} \neq \vec{v}$.
\n $T(\vec{u}-\vec{v}) = T(\vec{u}) - T(\vec{v}) = \vec{b} - \vec{b} = \vec{0} \Rightarrow \vec{u}-\vec{v} = \vec{0}$
\nTherefore, by contradiction, $\vec{u} = \vec{v}$

Theorem 12

be a linear transformation, and let A be the standard Let $T:\mathbb{R}^n\rightarrow\mathbb{R}^m$ matrix for T. Then:

- a. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m ;
- b. T is one-to-one if and only if the columns of A are linearly independent.

Proof: a) Column 2 of A span
$$
R^m
$$

\n CP every $\vec{b} \in R^m$ has a solution for $A\vec{x} = \vec{b}$
\n CP every \vec{b} in $T(\vec{x}) = \vec{b}$ has a solution
\n CP T map: R^n onto R^m
\nb) $T(\vec{x})=0$ and $A\vec{x} = \vec{o}$ represent the same thing
\n T is 1-tol CP $A\vec{x} = \vec{o}$ has only trivial solution, \vec{o}
\n CP Column 5 A are linearly independent
\n T 1-to-1: A has no Sice variables
\n T is onto R^m and A has an pivot position

Ex 5: Let T be the linear transformation whose standard matrix is below (2 cases). Determine whether they are "onto \mathbb{R}^3 " and/or a one-to-one mapping.

a) 1 2 3 1 0 0 2 5 0 0 0 4 *A* b) 1 2 2 4 3 5 *B* Why? Why? onto 3 ? one-to-one?