$1.8 -$ Linear Transformations

While the matrix equation $\underbrace{\overbrace{}\overbrace{}\overbrace{}\overbrace{}}_{\text{and the vector equation}}$ $\underline{\overrightarrow{A}}_1 \overrightarrow{A}_2 + \overrightarrow{A}_3 + \dots + \overrightarrow{A}_9 = \overrightarrow{b}$ are essentially the same except for notation, there is a case where the matrix equation represents an action on a vector that isn't directly connected with a linear combination of vectors.

$$
\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix} \text{ and } \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

Warnock - Class Notes

Does this picture look familiar from other math you've seen? A $\frac{1}{\sqrt{a^{n}+b^{n}}}$ $\forall n \in \mathbb{Z}$ from \mathbb{R}^{N} to \mathbb{R}^{M} is a rule that assigns each vector $\mathbf{x} \!\in\! \mathbb{R}^N$ to a vector $T(\mathbf{x}) \!\in\! \mathbb{R}^M$. The set \mathbb{R}^N is called the $\sqrt{\mathscr{O} \mathscr{M} \mathscr{A} \mathscr{M}} \mathscr{A}$ of *T*. $T: \mathbb{R}^N \rightarrow \mathbb{R}^M$ The set \mathbb{R}^M is called the $\frac{\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int_{\mathcal{O}}\textstyle\int$ For $\mathbf{x}\!\in\!\mathbb{R}^N$, the vector $T(\mathbf{x})\!\in\!\mathbb{R}^M$ is called the $_______q\in\mathcal{C}$ of \mathbf{x} . $T(x)$ The set of all $\frac{1 \wedge a \vee e}{1 \wedge b}$ $T(\mathbf{x})$ is called the $\frac{R}{R}$ ang \geq of T. Range \mathbb{R}^m

Domain

Codomain

Ex 1: Let $A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$,

define a transformation $T: \ \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, so that

$$
T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}
$$

a. Find $T(\mathbf{u})$, the image of **u** under the transformation T.

b. Find an **x** in \mathbb{R}^2 whose image under T is **b**.

c. Is there more than one x whose image under T is b ?

d. Determine if c is in the range of the transformation T .

a)
$$
\begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 + 3 \\ 6 - 5 \\ -2 - 7 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ -9 \end{bmatrix} \begin{bmatrix} 3 + the image \\ 0 + 2 \\ -1 \end{bmatrix}
$$

\nb)
$$
\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ -5 \end{bmatrix} \begin{bmatrix} 10 + 5 \\ 0 - 0.5 \\ 0 - 0.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3/2 \\ -1/2 \end{bmatrix}
$$

\n(c) No, no force variables
\nd)
$$
\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & 1/0 \\ -1 & 7/5 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & -3/2 \\ 3 & 5/2 \\ -1 & 7/5 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & 1/0 \\ -1 & 7/5 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 100 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 100 & 0 \\ 0 & 1/0 \\ 0 & 0 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & -3/2 \\ 3 & 5/2 \\ -1 & 7/5 \end{bmatrix} \begin{bmatrix} 100 & 0 \\ 0 & 1/0 \\ 0 & 0 \end{bmatrix}
$$

\n<

Ex 2: If
$$
A = \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix}
$$
, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ projects points in \mathbb{R}^3 onto the
 x_1, x_2 -plane because

$$
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}
$$

And $\begin{bmatrix} a_1 \neq b_1 \\ a_2 \neq c_1 \\ a_3 \neq d_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$
Conve that \mathbb{R}^2
Range: \mathbb{R}^2
Range: \mathbb{R}^2
called a shear
called a shear
 $\frac{1}{2}h \cdot \frac{1}{2}h \cdot \frac{1}{$

For the image below, let's look at the transformations of the vectors $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$, and $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix},$ and $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$

$$
T\begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}
$$

$$
T\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}
$$

$$
T\begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 3 \end{bmatrix}
$$

Definition

A transformation (or mapping) T is **linear** if:

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in the domain of T;
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all **u** in the domain of T.

Since the above properties are true for all matrices, then every $\underline{\mathcal{M}}$ at $\overline{\mathcal{N}}$ i \times transformation is a $\frac{1}{\sqrt{2\alpha\sqrt{2\alpha\sqrt{2\alpha\ln{2}}}}$ transformation. (Though the reverse is not true.)

 \top (0)= \top (0 \vec{u})

 $= \sigma T(\vec{\mu}) = \vec{0}$

 $= c T(\vec{v}) + dT(\vec{v})$

 \top (c \vec{a} + $d\vec{v}$) = \top (c \vec{v})+ \top ($d\vec{v}$)

Furthermore, (mini proof)

If T is a linear transformation, then

$$
T\left(\mathbf{0}\right)=\mathbf{0}
$$

and

$$
T(c\mathbf{u}+d\mathbf{v})=cT(\mathbf{u})+dT(\mathbf{v})
$$

for all vectors u , v in the domain of T and all scalars c , d .

The second property here actually can be generalized to

$$
T(c_1\mathbf{v}_1+\cdots+c_p\mathbf{v}_p)=c_1T(\mathbf{v}_1)+\cdots+c_pT(\mathbf{v}_p)
$$

This is referred to as a *Superposition principle* in engineering and physics.

Ex 4: Given a scalar r, define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = r\mathbf{x}$. T is called a $control$ C $ortr$ $actr$ on when $0 \le r \le 1$ and a $dirl$

l. Let $r = \pi$ and show that T is a linear transformation.

$$
T(cu+dv) = \prod_{i=1}^{n} (c \vec{u} + d \vec{v})
$$

= $\prod_{i=1}^{n} c \vec{u} + d \prod_{i=1}^{n} \vec{v}$
= $c \prod_{i=1}^{n} d \prod_{i=1}^{n} \vec{v}$
= $c \prod_{i=1}^{n} (d \prod_{i=1}^{n} \vec{v})$
= $c \prod_{i=1}^{n} (d \prod_{i=1}^{n} \vec{v})$

Review Ex. 5 on page 68 of a Rotation Transformation.