1.7 – Linear Independence **Math 22**

Definition

An indexed set of vectors $\{{\bf v}_1,\ldots,{\bf v}_p\}$ in \mathbb{R}^n is said to be linearly independent if the vector equation

$$
x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0} \qquad \forall \beta \in \mathbb{N}, \beta \in \mathbb{N}^p \subset \mathbb{N}
$$

Warnock - Class Notes

has only the trivial solution. The set $\{v_1,\ldots,v_p\}$ is said to be linearly dependent if there exist weights c_1, \ldots, c_p , not all zero, such that

$$
c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p=\mathbf{0}
$$

Ex 1: Determine whether the set $\{V_1, V_2, V_3\}$ is linearly independent. If not, find a linear dependence relation among $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 .

$$
\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \text{ and } \mathbf{v}_{3} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & \frac{1}{2} & 2 & 0 \\ 2 & 5 & 0 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

2 $\vec{v}_{1} - \vec{v}_{2} + \vec{v}_{3} = \vec{O}$

$$
-\vec{a}\vec{v}_{1} + \vec{v}_{2} - \vec{v}_{3} = \vec{O}
$$

$$
\vec{v}_{2} = -\vec{v}_{3}
$$

$$
-\vec{a}\vec{v}_{2} = \vec{O}
$$

$$
\vec{v}_{3} = \vec{O}
$$

$$
\vec{v}_{4} = \vec{O}
$$

The columns of a matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

 $1 -2 1$ $\begin{bmatrix} 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ $\begin{bmatrix} 3 & 1 & -2 \end{bmatrix}$ **Ex 2:** Determine whether the columns of the matrix $A = \begin{bmatrix} 2 & 1 & -1 \end{bmatrix}$ are $\begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$ $\begin{vmatrix} 1 & -2 & 1 \\ 2 & 1 & 1 \end{vmatrix}$ $\begin{vmatrix} 2 & 1 & -1 \end{vmatrix}$ $\begin{vmatrix} 2 & 1 & -1 \\ 2 & 1 & 2 \end{vmatrix}$ $\begin{bmatrix} -3 & 1 & -2 \end{bmatrix}$ \overline{a} $=\begin{vmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \end{vmatrix}$ $\begin{vmatrix} 2 & 1 & 1 \\ -3 & 1 & -2 \end{vmatrix}$ linearly independent.
 $\begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & -1 & 0 \\ -3 & 1 & -2 & 0 \end{bmatrix}$ - $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $\rightarrow \begin{bmatrix} -3 & 1 & -2 \\ \sqrt{11} & \sqrt{11} & \sqrt{11} \\ \sqrt{11} & \sqrt{11} & \sqrt{11} \end{bmatrix}$
 $\begin{bmatrix} 2 & 1 & -2 \\ \sqrt{11} & \sqrt{11} & \sqrt{1$

A set of two vectors $\{v_1, v_2\}$ is linearly dependent if at least one of the vectors is a multiple of the other. The set is linearly independent if and only if neither of the vectors is a multiple of the other.

Theorem 7 Characterization of Linearly Dependent Sets

An indexed set $S = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and ${\bf v}_1 \neq {\bf 0},\;$ then some ${\bf v}_j\;$ (with $j>1$) is a linear combination of the preceding vectors, $\mathbf{v}_1, \ldots, \mathbf{v}_{j-1}$.

Proof:
\n
$$
\overrightarrow{V}_{i} = C_{1} \overrightarrow{V}_{i} + C_{2} \overrightarrow{V}_{k} + ... + C_{j+1} \overrightarrow{V}_{j-1}
$$
\n
$$
\overrightarrow{V}_{j} = C_{1} \overrightarrow{V}_{i} + C_{2} \overrightarrow{V}_{k} + ... + C_{j+1} \overrightarrow{V}_{j-1}
$$
\n
$$
\overrightarrow{O} = C_{1} \overrightarrow{V}_{i} + C_{2} \overrightarrow{V}_{k} + ... + C_{j+1} \overrightarrow{V}_{j-1} - \overrightarrow{V}_{j} + O \overrightarrow{V}_{j+1} + O \overrightarrow{V}_{j+1} + ... + O \overrightarrow{V}_{f}
$$
\nnonzero solution
$$
\Rightarrow \overrightarrow{S} = \overrightarrow{S} = \overrightarrow{S}
$$
\n
$$
\overrightarrow{S} = \overrightarrow{S}
$$

Ex 4: Given the set of vectors $\{\mathbf u, \mathbf v, \mathbf w\} \in \mathbb{R}^3$ with **u** and **v** linearly independent, explain why vector \bf{w} is in the plane spanned by \bf{u} and \bf{v} if and only if $\{\bf{u},\bf{v},\bf{w}\}$ is linearly dependent.

 $Q.E.D.$

$$
\vec{u} \cdot \vec{v}
$$
 are linearly independent
\n $\vec{v} = a \vec{u} + b \vec{v}$
\n $\vec{u} = a \vec{u} + b \vec{v}$
\n $\vec{v} = -\vec{w} + a \vec{u} + b \vec{v}$
\n $\vec{v} = -\vec{w} + a \vec{u} + b \vec{v}$
\n $\vec{v} = -\vec{w} + a \vec{u} + b \vec{v}$
\n $\vec{v} = -\vec{w} + a \vec{u} + b \vec{v}$

Theorem 8

 $\frac{1}{\sqrt{2}}$

If a set contains more vectors than there are entries in each vector, then the set is
linearly dependent. That is, any set $\{v_1,\ldots,v_p\}$ in \mathbb{R}^n is linearly dependent if $p > n$.

Proof: Let
$$
p > n
$$
 (more vectors than degree)
\n \Rightarrow Free variables
\n \Rightarrow A $\vec{x} = \vec{o}$ has nontrivial solutions
\n \Rightarrow linearly dependent
\n $\begin{array}{c}\n\sqrt{x}.\n\end{array}$
\nQ.E.N.
\n $\begin{array}{c}\n\sqrt{x}.\n\end{array}$

Ex 5: Using Theorem 8, create a set of vectors in \mathbb{R}^3 that is linearly dependent, and don't automatically make some of the vectors obvious multiples or combinations of the others.

$$
\left\{\begin{bmatrix}1\\2\\3\end{bmatrix}, \begin{bmatrix}2\\5\\8\end{bmatrix}, \begin{bmatrix}-1\\9\\17\end{bmatrix}, \begin{bmatrix}e\\H\\J\overline{a}\end{bmatrix}\right\}
$$

Theorem 9
\nIf a set
$$
S = \{v_1, ..., v_p\}
$$
 in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.
\nProof:
\n $\overrightarrow{v_1} + \overrightarrow{v_2} + ... + \overrightarrow{v_p} = 0$
\n $\overrightarrow{v_1} + \overrightarrow{v_2} + ... + \overrightarrow{v_p} = 0$
\n $\overrightarrow{v_1} + \overrightarrow{v_2} = 0$
\n $\overrightarrow{v_2} + \overrightarrow{v_1} = 0$
\n $\overrightarrow{v_2} + \overrightarrow{v_2} = 0$
\n $\overrightarrow{v_3} + \overrightarrow{v_3} + \overrightarrow{v_3} + ... + \overrightarrow{v_3} = 0$
\n $\overrightarrow{v_3} + \overrightarrow{v_3} + ... + \overrightarrow{v_3} + \overrightarrow{v_4} = 0$
\n $\overrightarrow{v_2} = 0$
\n $\overrightarrow{v_3} + \overrightarrow{v_4} + ... + \overrightarrow{v_{m-1}} = 0$
\n $\overrightarrow{v_5} + \overrightarrow{v_6} + ... + \overrightarrow{v_{m-2}} = 0$
\n $\overrightarrow{v_7} + \overrightarrow{v_8} + ... + \overrightarrow{v_{m-1}} = 0$
\n $\overrightarrow{v_9} + \overrightarrow{v_{m-2}} = 0$
\n $\overrightarrow{v_1} + \overrightarrow{v_2} + ... + \overrightarrow{v_{m-1}} = 0$
\n $\overrightarrow{v_1} + \overrightarrow{v_2} + ... + \overrightarrow{v_{m-1}} = 0$

Ex 6:

Determine by inspection if the given set is linearly dependent.

a. $\begin{bmatrix} 1 \\ 7 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 9 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$ Lin Dep, 4 rectors in \mathbb{R}^3
(473) L in Dep, \vec{O} is present b. $\begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 8 \end{bmatrix}$ Lin Ind, C. $\begin{bmatrix} -2 \\ 4 \\ 6 \end{bmatrix}, \begin{bmatrix} 3 \\ -6 \\ -9 \end{bmatrix}$ Neither it a scalar
multiple of the other
(Close! Need -15 in last)

1.6 Exercise (we did chemistry example yesterday)

- a) Find the general traffic pattern in the freeway network shown in the figure. (Flow rates are in cars/minute)
- b) Describe the general traffic pattern when the road whose flow is x_4 is closed.
- c) When $x_4 = 0$, what is the minimum value of x_1 ?

