

Geometric Descriptions of \mathbb{R}^2

Parallelogram Rule for Addition

If u and v in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are u, 0, and v. See Figure 3.

Ex 2: Given
$$\mathbf{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, draw their vectors and the following.

a)
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} 1+4\\ -\lambda+\lambda \end{bmatrix} = \begin{bmatrix} 5\\ 0 \end{bmatrix}$$

b) $3\mathbf{u} = \begin{bmatrix} 3(1)\\ 3(-\lambda) \end{bmatrix} = \begin{bmatrix} 3\\ -6 \end{bmatrix}$
c) $-\frac{1}{2}\mathbf{v} = \begin{bmatrix} -\frac{1}{2}\\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -2\\ -1 \end{bmatrix}$

Vectors in \mathbb{R}^3

The Zero vector has entries of all zero, denoted by $\mathbf{0}$ or $\mathbf{0} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$

Algebraic Properties of \mathbb{R}^n For all u, v, w in \mathbb{R}^n and all scalars c and d:

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 Commutative prop
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ assoc. prop.
(iii) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
(iv) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$, where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$
(v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
(vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
(vii) $c(d\mathbf{u}) = (cd)\mathbf{u}$
(viii) $1\mathbf{u} = \mathbf{u}$

Prove (i) and (v)

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} u_{1} \\ u_{n} \\ u_{n} \end{pmatrix} + \begin{pmatrix} v_{1} \\ v_{n} \\ v_{n} \end{pmatrix} = \begin{pmatrix} u_{1} + v_{1} \\ u_{n} + v_{2} \\ v_{n} \end{pmatrix} = \begin{pmatrix} u_{1} + v_{1} \\ u_{n} + v_{2} \\ u_{n} + v_{n} \end{pmatrix} = \begin{pmatrix} v_{1} \\ v_{1} + u_{2} \\ v_{n} + u_{n} \end{pmatrix} = \begin{pmatrix} v_{1} \\ v_{2} \\ v_{n} \end{pmatrix} + \begin{pmatrix} u_{1} \\ u_{n} \\ v_{n} \end{pmatrix} = \begin{pmatrix} v_{1} \\ u_{n} \\ v_{n} \end{pmatrix} = \begin{pmatrix} v_{1} \\ v_{2} \\ v_{n} \\ v_{n} \end{pmatrix} = \begin{pmatrix} u_{1} + v_{1} \\ u_{n} \\ v_{n} \end{pmatrix} = \begin{pmatrix} c(u_{1} + v_{1}) \\ c(u_{n} + v_{n} \\ c(u_{n} + v_{n}) \\ c(u_{n} + v_{n} \end{pmatrix} = \begin{pmatrix} c(u_{1} + v_{1}) \\ c(u_{n} + v_{n} \\ c(u_{n} + v_{n}) \\ c(u_{n} + cv_{n} \\ c(u_{n} + cv_{n}) \\ c(u_{n} + cv_{n} \\ c(u_{n} + cv_{n} \\ c(u_{n} + cv_{n} \\ v_{n} \\ c(u_{n} + cv_{n} \\ v_{n} \\ v_{n} \end{pmatrix} = \begin{pmatrix} u_{1} \\ c(u_{n} \\ v_{n} \\ v_{n} \\ c(u_{n} + cv_{n} \\ v_{n} \\ v_{n} \\ c(u_{n} + cv_{n} \\ v_{n} \\ v_{n} \\ v_{n} \\ c(u_{n} + cv_{n} \\ v_{n} \\ v_{n} \\ v_{n} \\ c(u_{n} + cv_{n} \\ v_{n} \\ v_{n} \\ c(u_{n} + cv_{n} \\ v_{n} \\ v_{n} \\ v_{n} \\ c(u_{n} + cv_{n} \\ v_{n} \\ v_{n} \\ v_{n} \\ v_{n} \\ c(u_{n} + cv_{n} \\ v_{n} \\ v_{n} \\ v_{n} \\ v_{n} \\ c(u_{n} + cv_{n} \\ v_{n} \\ v_{n$$

Linear Combinations

Given vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ in \mathbb{R}^n and given scalars c_1, c_2, \ldots, c_p , the vector **y** defined by

$$\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$$

is called a linear combination of $\mathbf{v}_1,\ldots,\mathbf{v}_p$ with weights $c_1,\ldots,c_p.$

Ex 4: Determine whether **b** can be written as a linear combination of a_1, a_2, a_3 .

$$\mathbf{a}_{1} = \begin{bmatrix} 1\\ -2\\ 0 \end{bmatrix}, \mathbf{a}_{2} = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}, \mathbf{a}_{3} = \begin{bmatrix} 5\\ -6\\ 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2\\ -1\\ 6 \end{bmatrix}$$

$$\mathbf{x}_{1} \begin{bmatrix} 1\\ -2\\ 0 \end{bmatrix} + \mathbf{x}_{n} \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix} + \mathbf{x}_{n} \begin{bmatrix} 5\\ -6\\ 8 \end{bmatrix} = \begin{bmatrix} 2\\ -1\\ 6 \end{bmatrix}, \begin{bmatrix} \mathbf{x}_{1} + 5\mathbf{x}_{3} = \begin{bmatrix} 2\\ -1\\ -2\mathbf{x}_{1} + \mathbf{x}_{n} - 6\mathbf{x}_{3} = \begin{bmatrix} 2\\ -1\\ +2\mathbf{x}_{n} + 8\mathbf{x}_{3} \end{bmatrix} = \begin{bmatrix} 2\\ -1\\ -2\mathbf{x}_{1} + \mathbf{x}_{n} - 6\mathbf{x}_{3} = \begin{bmatrix} 2\\ -1\\ -2\mathbf{x}_{1} + \mathbf{x}_{n} - 6\mathbf{x}_{3} = \begin{bmatrix} 2\\ -1\\ -2\mathbf{x}_{1} + \mathbf{x}_{n} - 6\mathbf{x}_{3} = \begin{bmatrix} 2\\ -1\\ -2\mathbf{x}_{1} + \mathbf{x}_{n} - 6\mathbf{x}_{3} = \begin{bmatrix} 2\\ -1\\ -2\mathbf{x}_{1} + \mathbf{x}_{n} - 6\mathbf{x}_{3} = \begin{bmatrix} 2\\ -1\\ -2 \end{bmatrix}, \mathbf{x}_{1} = 2\mathbf{x}_{2}\mathbf{x}_{3} + \mathbf{x}_{3}\mathbf{x}_{3} = \begin{bmatrix} 2\\ -1\\ -2\\ 0 \end{bmatrix}, \mathbf{x}_{1} = 2\mathbf{x}_{2}\mathbf{x}_{3}\mathbf{x}_{3} = \mathbf{x}_{3}\mathbf{x}_{3} = \mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3} = \mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3} = \mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3} = \mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3} = \mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3}\mathbf{x}_{3} = \mathbf{x}_{3}$$

A vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}]$$
 (5)

In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and only if there exists a solution to the linear system corresponding to the matrix (5).

Definition

If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is denoted by Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ and is called the **subset of** \mathbb{R}^n **spanned** (or **generated**) by $\mathbf{v}_1, \ldots, \mathbf{v}_p$. That is, Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p$$

with c_1, \ldots, c_p scalars.

$$\mathbf{b} \in \operatorname{Span} \left\{ \mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p \right\}?$$

Every scalar multiple of individual vectors, $c\mathbf{v}_k$?

Geometric Description of Span $\{ {f v} \}$ and Span $\{ {f u}, {f v} \}$

Ex 5: Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 3 \\ 10 \\ -4 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1 \\ 4 \\ 2 \end{bmatrix}$. Span $\{\mathbf{a}_1, \mathbf{a}_2\}$ is a plane in \mathbb{R}^3 .

Is **b** in that plane?

Ex 6: Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -3 \\ 1 \\ 8 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} h \\ -5 \\ -3 \end{bmatrix}$

For what value(s) of *h* is **y** in the plane generated by \mathbf{v}_1 and \mathbf{v}_2 ?