$1.3 - Vector$ Equations

Geometric Descriptions of \mathbb{R}^2

Parallelogram Rule for Addition

If **u** and **v** in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are **u**, **0**, and **v**. See Figure 3.

Ex 2: Given
$$
\mathbf{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}
$$
 and $\mathbf{v} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$,
draw their vectors and the following.

a)
$$
\mathbf{u} + \mathbf{v} = \begin{bmatrix} 1 + 4 \\ -\lambda + 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}
$$

\nb) $3\mathbf{u} = \begin{bmatrix} 3(1) \\ 2(-\lambda) \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \end{bmatrix}$
\nc) $-\frac{1}{2}\mathbf{v} = \begin{bmatrix} -\frac{1}{2}(4) \\ -\frac{1}{4}(4) \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$

Vectors in \mathbb{R}^3

The Zero vector has entries of all zero, $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$ denoted by **0** or \overrightarrow{O} =

Algebraic Properties of \mathbb{R}^n

For all u, v, w in \mathbb{R}^n and all scalars c and d:

(i) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ Commutative \int^{ρ} (ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ assoc. $\beta^{\gamma\sigma}\beta^{\gamma}$ (iii) $u + 0 = 0 + u = u$ (iv) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$, where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$ (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (vi) $(c+d)$ **u** = c **u** + d **u** (vii) $c(d\mathbf{u}) = (cd)\mathbf{u}$ (viii) $1u = u$ Commutative

Prove (i) and (v)
\n
$$
\overrightarrow{u} + \overrightarrow{v} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_1 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ u_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \\ u_4 + v_3 \end{bmatrix} = \begin{bmatrix} v_1 + u_1 \\ v_2 + u_3 \\ v_3 + u_3 \\ v_4 + v_3 \end{bmatrix} = \begin{bmatrix} v_1 + u_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ v_3 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} v_1 + v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} v_1 + v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} v_1 + v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} v_1 + v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} c_1u_1 + c_1v_1 \\ c_2u_2 + c_2v_2 \\ c_3u_3 + c_3v_4 \end{bmatrix} = \begin{bmatrix} c_1u_1 + c_1 \\ c_2u_2 \\ c_3u_3 \\ v_4 \end{bmatrix} + \begin{bmatrix} c_1v_1 \\ c_2v_2 \\ c_3u_3 \\ v_4 \end{bmatrix}
$$
\n*Proof*
\n*Property et al* numbers
\n*Property et al* numbers
\n*Method*

Linear Combinations

Given vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p$ in \mathbb{R}^n and given scalars $c_1, c_2, ..., c_p$, the vector y defined by

$$
\mathbf{y} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p
$$

is called a linear combination of $\mathbf{v}_1,\ldots,\mathbf{v}_p$ with weights $c_1,\ldots,c_p.$

Ex 4: Determine whether **b** can be written as a linear combination of a_1, a_2, a_3 .

$$
\mathbf{a}_{1} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \mathbf{a}_{2} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \mathbf{a}_{3} = \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}
$$

\n
$$
\times_{1} \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} + \times_{2} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \times_{3} \begin{bmatrix} 5 \\ -6 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix} \begin{bmatrix} \gamma_{1} & +5\gamma_{3} \\ -2\gamma_{1} + \gamma_{2} - 6\gamma_{3} \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}
$$

\n
$$
\frac{1}{2} \begin{bmatrix} 0 & 5 & 2 \\ 1 & -6 & -1 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} 1 & 0 & 5 & 2 \\ 1 & 0 & 14 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \gamma_{1} = 2 & -5\gamma_{3} & \gamma_{3} & 15 & 17 & 18 \\ 1 & \gamma_{2} = 3 & -4 & \gamma_{3} & \gamma_{4} & 18 & 18 \\ 1 & \gamma_{5} = 3 & -4 & \gamma_{5} & \gamma_{6} & \gamma_{7} & 18 & 18 \\ 1 & \gamma_{6} = 3 & -4 & \gamma_{7} & \gamma_{8} & \gamma_{8} & 18 & 18 \\ 1 & \gamma_{7} = 3 & -4 & \gamma_{8} & \gamma_{9} & \gamma_{10} & \gamma_{11} & \gamma_{12} & \gamma_{13} \\ 1 & \gamma_{8} = 3 & -\gamma_{11} & \gamma_{12} & \gamma_{13} & \gamma_{14} & \gamma_{15} \\ 1 & \gamma_{9} = 1 & \gamma_{13} & \gamma_{14} & \gamma_{15} & \gamma_{16} \\ 1 & \gamma_{15} = 1 & \gamma_{16} & \gamma_{17} & \gamma_{18} & \gamma_{19} & \gamma_{10} \\ 1 & \gamma_{16} = 1 & \gamma_{17
$$

A vector equation

$$
x_1\mathbf{a}_1+x_2\mathbf{a}_2+\cdots+x_n\mathbf{a}_n=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \qquad \mathbf{a}_n \quad \mathbf{b}] \tag{5}
$$

In particular, b can be generated by a linear combination of a_1, \ldots, a_n if and only if there exists a solution to the linear system corresponding to the matrix (5).

Definition

If $\mathbf{v}_1,\ldots,\mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1,\ldots,\mathbf{v}_p$ is denoted by Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ and is called the subset of \mathbb{R}^n spanned (or generated) by $\mathbf{v}_1,\$ collection of all vectors that can be written in the form

$$
c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p
$$

with c_1, \ldots, c_p scalars.

$$
\mathbf{b} \in \mathrm{Span}\left\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\right\}
$$
?

Every scalar multiple of individual vectors, $c\mathbf{v}_k$?

Geometric Description of Span $\{ {\bf v} \}$ and Span $\{ {\bf u}, {\bf v} \}$

Ex 5: Let
$$
\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}
$$
, $\mathbf{a}_2 = \begin{bmatrix} 3 \\ 10 \\ -4 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1 \\ 4 \\ 2 \end{bmatrix}$. Span $\{\mathbf{a}_1, \mathbf{a}_2\}$ is a plane in \mathbb{R}^3

.

Is **b** in that plane?

Ex 6: Let
$$
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}
$$
, $\mathbf{v}_2 = \begin{bmatrix} -3 \\ 1 \\ 8 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} h \\ -5 \\ -3 \end{bmatrix}$

For what value(s) of *h* is **y** in the plane generated by v_1 and v_2 ?