5.3 - Polynomial Equations & Factoring

Zeros and Roots The x-values for which a function f(x) is 0 are called the zeros of the function.

The x-values for which an equation such as f(x) = 0 is true are called the roots of the equation.

(2) Find the Zeros of the function
$$F(x) = x^3 - 2x^2 - 3x$$

The	Principle	of Zero	Products	For any real	numbers a and b:
If ab	= 0, then	a = 0 or l	b = 0. If $a = 0$	= 0 or b = 0,	then $ab = 0$.

When a polynomial is written as a product, we say it is _____.

The zeros of a polynomial function are zeros described by the _____ of the polynomial.

(3) Solve (x-2)(x+5)=0

f(x) = x(2x+5), find the zeros of the Function.

To ____ an expression means to write it as a product.

To factor out the Greatest Common Factor (GCF) we will do _____.

a)
$$6x^{3}-24$$

$$b) 12r^2s^3 - 9r^5s^6 + 15r^3s^2$$

$$(-)$$
 $-5x^2 + 10x - 25$

$$d) - 4x^{4} + 6x^{3} - 2x^{2}$$

Factoring by Grouping.

(6) Factor
$$(x-2)(x^2-3)+(x-2)(5-3x^2)$$

7) Factor by Grouping
a)
$$b^3 - b^2 + 2b - 2$$

$$(6)$$
 $(1)^{3}$ $(1)^{2}$ $(1)^{2}$ $(1)^{2}$

To Use the Principle of Zero Products

- Write an equivalent equation with 0 on one side, using the addition principle.
- 2. Factor the nonzero side of the equation.
- 3. Set each factor that is not a constant equal to 0.
- 4. Solve the resulting equations.