Functions are used to show a relationship between two quantities. We will represent functions with words, tables, symbols, and graphs. Not all relationships can be considered functions however.

Function – a relationship between two sets of quantities, where

The Input -

The Output -

Function Notation –

A picture:

Input
$$x$$
 \longrightarrow Function f \longrightarrow Output $y = f(x)$

Wages Example -

1. Is it a Function?

a) Input \$1 to Quarter (25¢) Change Machine (what's the output?)

vs.

Input \$1 into Slot Machine (what's the output?)

b)	Input – Baseball Team	Output – Baseball City
•		
c)	Input – Baseball City	Output – Baseball Team
•		

We need to be able to:

- Decide if a relationship is a function
- Evaluate a function
- Graph a function
- Determine what numbers or values are allowed as inputs (Domain)
- Determine what numbers or values can result as outputs (Range)

2. For each of the examples in the table below, state whether the table, graph, or words do or do not describe a functional relationship. If it does not, provide an explanation or circle the features you used to make your decision.

Vertical Line Test –

Evaluating Functions - The first step is being able to read and interpret the symbols in the name of a function.

3. In the following examples, use the tables, graphs, and symbols to evaluate the given functions.

Tables	Graphs	Symbols	
j) n p(n)	k)	1) If $f(r) = 2 + 7r - r^2$, • Compute $f(3)$	
 Compute p(0) Find p(-1) 	• Compute <i>H</i> (1)	• Evaluate $f(r)$ at $r = 8$	
• Find n such that $p(n)=13.5$	 What is H(-7) For what values of x is H(x)=5 	• Find $f(-2)$	

Graphing a function

- 2. To graph a function, use the "creating a table of values" approach.
 - a) Graph f(x) = 3x 5

X	f(x)

b) Graph $q(x) = x^2 - 3$

Х	q(x)

c) Graph $s(x) = 3\sqrt{x}$

Х	q(x)