1.8 and | 1.9: Power Series
Math 163: Calculus Ill (Fall 2022)

Power Series, part 1

« Power Series by the pictures
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Intuitively, a power series is like an mﬁmtely long polynomial (exce
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Key idea: Working with power series ¢, +¢.. . +...+c¢,x" +...is first and foremost about

finding the coefficients ¢,,¢,,c,,¢;,...,c,,... Often (atleast in class) we find a nice formula for the

o]

coefficients and simply writé X ¢ x . But, either way the task at hand begins with finding coefficients.
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About now, you might be wondering why anyone would care about power series. The next example
provides a graphical connection between power series and more familiar topics. 0 [ -~
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Polynomial functions can be evaluated using basic operations (addition, subtraction, multiplication and
division) and they can be differentiated / integrated pretty easily. But this is not the same for many other
functions such as trig, exponential or logarithmic functions! It is beneficial to rewrite a function as a
polynomial. This strategy is useful for integrating functions that don’t have elementary antiderivatives, for
solving differential equations, and for approximating functions values. Scientists do this to simplify the
expressions they deal with; computer scientists do this to represent functions on calculators and computers.

% The Geometric Series

There are infinitely many power series, but some are famous enough to merit a name. The first of these is
named the geometric series. The next few examples help us understand this very important (but basic)
example.

We will begin with examples without x and then work our way toward actual power series

Example 2: Evaluate the following:
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{— And most interesting is when we allow thg/upper limit fo be infinite in which case we are left with what is

called an infinite series.



L’ And most interesting is when we allow th@r limit §o be infinite in which case we are left with what is

called an infinite series.
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Reflecting on the previous examples, the following pattern emerges for zg g" .
n=0




The expression Z a %” = is a power series (and specifically a geometric series). It equals a number

I-%

whe It does not equal a number when ‘x‘ >1. When a series sums to a number, we say, “The

series converges.” When a series does not converge to a number, we say, “The series diverges.”

Definition: The Geometric Series

e o
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Example 6: Find a power series expansion for f (x)=—— . When does this series converge {eqnal a
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1.)) Finding power series representations for functions (and using them to solve questions).
etermining the x values for which the work above is valid. That is, when do the series

L«UllVClgU/UlVCl 8l! ?

3.) Proving that this whole process is legitimate mathematics.

This last step is (mostly) beyond the scope of Highline mathematics. While we will touch on the middle
qton wira il laovya 14q Finar dAataila far anathar antirgae NMagt of air affaet 13711l lha ginant A mmath~ado fase

DLCF WU W11 1CavU 1L 111101 UClLldlld 1Vl alluulCl LOUULdCO. 1VIUDL Ul VUl Cl11uUll wlll UC PC 1L ULl 1LICUIVUD 1U1L
finding power series.

As we assumed in the previous example, one of the qualities of power series is that they can be manipulated
thraniagh addition quibtraction multinlication divicion differontiation and intecration to find other nower
L Uusll auuiiuivil, buULla\.«LlUll’ lllUlLllJlanllUll, \JlVlDlUll, ulliviviiuatuivil, aliu lllL\.«ElaLlUll LU 1111uU Uuivli }}UVV\.«I
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Example 8: Show that: ———=1+2x+ 3x% +4x° +5x* + ...
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Note: Thus far, W ywignoring the questien-ofWITCI These power series are valid.
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Example 9: Find a power series representation for In (1 = x) .
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Historical note: Today we can evaluate logarithms simply by pushing a calculator button. Prior to that,
mathematicians looked up the log values in books. One source of the values in the books was
mathematicians evaluating power series like the one above.
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Example 10: Integrate I tan~' x dx using power series -EW"X'O' A = S l C_— D _/__ d)(
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Historical note: Earlier in calculus, we learned to integrate questions like this using integration by parts.
Power series provides an alternative approach that requires no calculus skills beyond
integrating/differentiating polynomial terms.
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Example 11: Solve [ (x) =f '(x) using power series. <\_) \
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Note: In this solution we took a term-by-term approach to finding the coefficients ¢,,¢,,¢,.¢,.....C_....

This has the same end result as finding a formulz ? ¢ ", it just isn’t as concise.

Az}

Historical note: You may recognize the question above as a differential equation. Power series provides
an extremely powerful technique for solving differential equations that can work on many many
questions. It frequently isn’t the fastest or cleanest approach ... but it works. This is why power series
have historically been the “Swiss Army Knife” of functions ... they work in a wide variety of situations.




+ Power Series term by term using derivatives

We have found the derivative of power series. This next example is a little different; here we use
derivatives to find the coefficients.

Example 1: Find a power series representation for f(x)=sin(x).
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The series we found is an example of a more general type of power series called a Maclaurin Series.

Definition: Suppose the function f has derivatives of all orders on an interval centered at x =0, then its

Maclaurin Series is: FM ] F
" (3) (4)
f(x):f(0)+f'(0)X+f (O)x2+f (O)x3 A ,(O)x"’+...

This can be written more concisely as: f (x) = Z /

Note: A Maclaurin Series is a type of power series. It is found by finding the coefficients term by term
using derivatives.
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As with geometric series, the Maclaurin Series can be manipulated to go quite a way:

Example 3: Find a Maclaurin Series (that is, a power series) representation for the following:




m} 0 4‘\ & o
If you have been paying attention, you may have noticed that we have found power series in the previous

few examples, but have NOT made mention of where these series are valid. This is because we are no
longer working with geometric series and consequently need more power (pun).

Specifically, we will use two facts and one method/test.

— !
Fact 1: The Huarmonis series diverges. In symbols: Z — =00
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So why does one infinite series converge and another diverge? That is a big question and we will leave it
for another course. However, we can see that sometimes we sum an infinite number of terms and get a
number (converge) and other times we don’t get a number (diverge).

One of the most powerful ways of determining if a series will converge is to ask, “Do the terms decrease
fast enough to converge? But how do we measure, “Fast enough”?

Example 4: Explore thil;ano of consecu ive terms on thesp three series
ox 2= v+ (3) 25 o zi ‘> %K(M}*
n=0
QM
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As with geometric series, the Maclaurin Series can be manipulated to go quite a way:

Example 3: Find a Maclaurin Series (that is, a power series) representation for the following:

a.) f(x) =

b.) g(x) =x'e"

Three Maclaurin Series to Memorize:

n
© X 1) x2n+l

5 _ x" 0 ~ % (_1)” x2n
C T & sin(x)= 2, (2n+1)! cos(x)=2, (2n)!

n=0

% A deep dive into where Power Series Converge

If you have been paying attention, you may have noticed that we have found power series in the previous
few examples, but have NOT made mention of where these series are valid. This is because we are no
longer working with geometric series and consequently need more power (pun).

Specifically, we will use two facts and one method/test.
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So why does one infinite series d another diverge? That is a big question and we will leave it
for another course. However, we can see that sometimes we sum an infinite number of terms and get a
and other times we don’t gat & nusnbey (divorgeh
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One of the most powerful ways of determining if a series will converge is to ask, “Do the terms decrease
fast enough to converge? But how do we measure, “Fast enough”?

Example 4: Explore the ratio of consecutive terms on the
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Let’s sum up what we have seen about series and ratios thus far.

|
No X5
i ) &/f

a. A power series is of the form: chx" =gy tex+ox +ox +otex" o, "+
_ S
n=0 \gr IT‘I
R .

Power series, coefficients, and terms

b. The coefficients are: ¢, ¢, ¢, 0000, .0

%,%,%,m,%,

2. About ratios of consecutive terms a, and a

c. The terms are:

n+l :
a. Ratios > 1 mean the terms are increasing quickly.

b. Ratios < 1 mean the terms are decreasing to zero rapidly.

c. Ratios = 1 aren’t changing quickly enough to know to draw a conclusion (using ratios)
About absolute value

a.

Terms can vary in sign. The absolute value of the ratio sometimes makes quantities bigger

(positive) and thus convergence more difficult. So if a series converges with the absolute
value, it certainly converges without it.

This leads us to a powerful and (relatively) easy test for convergence.

Definition: The Ratio Test

a) Tf lim

(o] [e 0]
4
Sl s iihan N a4 — N s v o (ahonlntalao G

Fal et s
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a.) If lim|-—=*=L <1, then Zan = chx” is (absolutely) convergent.
n—e (iz n=0 n=0

b.) If lim |-

n—>0 {f i

o0 o0
then 30, =36,
n=0 n=0

¢ If lim|%

H—0

ent

In particular, notice that when the
is why we call the test “inconclusive” in this instance.

20 n

Example 4: Where does the Maclaurin series e* = Z— converge? Pl

Latio [ /ﬂﬁ( = lﬁn‘:"‘

N3O AN 900
Test. ¥
< ,J-a o I M)
= (> e— 1z 5l
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Example 5: Consider > = > with geometric series iS(—3 —x)n
E— 4=x 1-(3-x)

Find the x values where this series converges using the ratio test.

protio . {f_'fﬂ— = [¥ m 5’(-'3”"’(3*7)"“
(3}&9 e Laed ay M7 5(—%)” (?“)’9(3';

2

Sertes covnilons whe [3+x] « 4

-— . - N . ar - /'




Seres couw«(‘cac,,c whew [3¥X| < -
= -1ed+x &L
s -

As we focus in on convergence, two definitions will help us.

Definition: The interval of caonvergence of a power series is the interval that consists of all values of x for
which a series converges.

Note: Intervals have endpoints that may (or may not) be included in the interval of convergence.

Lazy Definition: The ragiss of senverzence (s half the width
or infinity).

the isterval of convergence (possibly zero

= is (-1)"(3+x)" and find its fse:

oo A Yith=

Example S revisited: Consider Pof convergenos and radliss

of convergence,
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The following examples show how we find the interval of convergence and radius of convergence once we
have a power series in hand.

, 7 & X o
Example 6: Suppose you are given a power s@nd its interval of convergence a
P K9S | - n
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Example 8: Find the interval of convergence and radius of convergence of the Maclaurin series
_ & () o 2 (1)) ,
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Example (7.1): Find the Taylor Series for f (x) = centered at 9/29’

f = x
P =-4%

(x-17 + ..
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Power Series: A somewhat historical approach
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We are learning about power series. We have done this in two steps:

- We learned to find power series.
- We found where those series were convergent.

This second point and the interval of convergence provides us a clue toward our next step.

Example (8.1): Review two power series for

BV B 4

Notice that one function may have more than one power series representation. These series have different
intervals of convergence. Of particular note, th

Historical Note: One of the most innovative aspects of Cauchy’s [limit focused] program of rigor was
his rejection of divergent series. These had been widely used in the eighteenth century, before Cauchy
declared that they were unacceptably ill-defined, and produced ambiguous or even erroneous results.
Picking up on this point in several papers of the early 1830s, Poisson tried to come to a clearer
understanding of these series and the boundaries of their legitimacy. In his 1844 paper ‘‘On Divergent
Series and Various Points of Analysis Connected with Them,’” De Morgan blasted not only Poisson’s
ideas and Cauchy’s definition of the integral on which they were based, but the whole preoccupation with
certainty which valorized the search for rigor. ‘‘Divergent series, at the time Poisson wrote, had been
nearly universally adopted for more than a century, and it was only here and there that a difficulty
occurred in using them,”” he fumed. The knowledgeable mathematician, De Morgan pointed out, could
easily detect and correct such problems when they arose. To artificially control their use just in order to
guarantee rigorous exactitude was at best unnecessary and ridiculous. At worst it could stand in the way
of deeper understanding of the truth embodied in these series, which was as yet still poorly
comprehended. As De Morgan wrote: “We must admit that many series are such as we cannot at present
safely use, except as means of discovery, the results of which are to be subsequently verified. But to say
that what we cannot use no others ever can, to refuse that faith in the future prospects of algebra which
has already realized so brilliant a harvest . . . seems to me a departure from all rules of prudence.” For De
Morgan, to draw back from poorly defined or understood mathematical conclusions was a grievous
error.!

1 Joan Richards (2011) God, Truth and Mathematics in Nineteenth-century
England, Theology and Science, 9:1, 53-74, DOI: 10.1080/14746700.2011.547005
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This is not the first time we have generated a power series with a known center point. In particular, the

iy
{43}

Maclaurin Series formula f a = - x" generates series centered at ¥ =i, This formula (and the

3t

accompanying derivation) can be modified to generate series centered at x = 1.
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Maclaurin Series formula f'{x} = % Ll 37 generates series centered at ¢ = . This formula (and the

accompanying derivation) can be modified to generate series centered at x = (.
.. . . . . sons .. _',./ Av - i {7\:‘;
Definition: If f'has a power series representation (expansion) at x = a, that is if } \A\j Zc hveen
=

7

. . . [ .
when |x— a| <R, then its coefficients are given by the formula & : -t . We call the series above a

Taylor Series.

s Macimirin Sertes

.
=

f

wal < TayiorSeries

1
Example (8.2): Find the Taylor Series for f (x) =— centeredat a =16

Jx

2 ).J.K 7 i;iliz’ ~f
(K> = T [x-45 & T Q% (R-04)7 + ..

g} — vy 7\

comesre aV
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Example 3: Find the Taylor Series for é (x) = _)i —x° centered at a =2

quvye w-x> | "k god= } }

5= ¢ = 3x> <l > LN S Lo,
‘ z -~ bX

9 =

5(330&: L ~6

%l'/')(yw - A'



1
Example 2 revisited: Answer the following for f (X) = T
X

a.) Find the Taylor polynomials ¥ ‘centered at x =16.

)
-—2‘ T Interesting math side note on how to write the
Py product of evens or odds. Here are a couple
1 - _‘,_:\ w10) of little examples:
2+ v G A 33

(! Evens: 1Zx10x8x6x 47 =
L, - X )3 2 he odd 1111-§ d?g I

<3 " 2 X Tz -t the odds are a little more difticult
"2 2 ey T2t (X0

| 2! Odds:

Jo3-7F-T-. ..



'7, < "Z’s - ‘,fi (,‘("‘) A ‘;3.' CX"L; the odds are a little more difficult
— —
1! 2! Odds:
* -2 £ Txbxixdx3 :
\ Lg oetsd ~ 18 | oxansxaxge BT xBx5xx3x 3]
- — t /
- fr"()("‘) 7;2_&1 2.3 RuBixdx?
2% ' : o
— N
2441

1 1
b.) Use T,,1,,T,,T, to approximate and . Then compare these approximations to the
R Jies 22

caleulstorvalue an
and the value that the Tayl

Note tha
Polynomia

— ides g
T \ 0.z2s |lo.28 0006 ©. 07348 j "
T | azizg | 003 0o.bsd2 ©.0lo¢ WW

_ 1 é
/ra‘ 0240 ‘93?” 63 | o_0000 2 ©.005% | x./ ]é/

r is the difference betwee ion value

Power Series
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There is a problem. Taylor Polynomials (and Power Series) allow us to generate approximate values.
However, these are estimates. How close are the approximate values to the actual values? In order to find

the error, we would need to know the exact value but if we knew the exact values we would not need an es-
timate in the first place.



the error, we would need to know the exact value but if we knew the exact values we would not need an es-
timate in the first place.

We need a way tc find the arrey that does not require that we kaow the exact value. Or, to be more precise,
we need a way te bound the orrorn,

This requires that we build up more notation.

~ s Coy g i s - el : : i s .
Definition: Let f have continuous derivatives up to f " on an open interval / containing . For all x

o

inl flx)=7 {s)+R4£x) where T is the nth-deoree Tavior ?}ﬁ‘é’\‘“‘:ﬂ?’z"s? +1 for f centered at X =a an

HL L, A e Tommpaee WICIC g 10 L o 100 NCT

N i 5
R {x} s the temainder.

v kY 1
Example 2 revisited: Find R, (x) for the 3" degree Tayior Polynomial of f (x)= T centered at
X

} - ?

ﬂ; —7

aPW

. o . . 1 .
Notice: Finding(R, (x) gbquires knowing the exact value of —= . In this case we can use our calculator to
T X

evaluate but what if we didn’t have that ability?

1
\/; ’



The Remainder Estimation Theorem: Suppose there exists a number M such tha - for

all x in the interval {a —c.ato

. The remainder of the nth-degree Taylor Polynomial for f* centered at a

{ | —2 X

a-¢ a atc

satisfies: ‘Rn (x)’

Example 2 revisited: Bound the error i@n the interval % % » <22 and find the upper bound (max) er-

| 1 U3 14 43
ror in your estimates for and . . N
J68 22 @ —

@ Fied M.
‘ (:L}H)(I(Xl

359 %X \
/

77\ b
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-
~
™
:‘7
‘\)
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3

= 22
DH_ (4
& ’f¢3(><>86,0.c9m93°>3'—1 | 169 )(7
s )
= 0.00000569 (\M—mj jMa(( &fwr').
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Bonus Questions

Example 4: Find the first three non-zero terms in the Maclaurin series for f (x) =e'sinx.
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Example 5: Find the radius of convergence of Z

Cocto . | pa }aw(

ey e Mool O

D)
2
X
L
s
)
N

\\!

(x=2)°
n" ( ><_,7,) N

T o ==




. WLy . I
= lim Lf_________;,:_‘ \
PP e (P71
- \%»2\ ) " ———L)—i—" Px) )VJG’H)
} P 76 Lr-’—n)pﬂ — (> = P!

’JI') —

‘1

— -~ ‘\ —, ..
= )x-™ WEYS Pty (Pry —> o2

x| e B5ole T )
PP ) M P
= | X-2| €
! Tho- senies conUFE
2 [x-2]e& -0 (-o0,00)
P r Seri
- O « fl”Math 163: Calculus ||‘|DZ;§|| 2%23? Q——"’/‘ 0O
Example 6: Find the Taylor series for f (x)=cosx centered at x =77 . Guap 3;’11{( Eé(iazgs:ﬁm:
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Question: Why would it be beneficial to center the serie§ &t x = 7 ¥
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Power Series: A somewhat historical approach
Math 163: Calculus Il (Winter 2023)
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Example (9.1): Find the first three non-zero terms in the Maclaurin series for f° (x) =e"sinx.
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