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Section 10.2: Calculus with Parametric Curves
Math 163: Calculus IIl (Fall 2022)

Calculus with Parametric Curves

Having seen how to represent curves by parametric equations, we now apply the methods
of calculus to these parametric curves. In particular, we solve problems involving tangents,

area, arc length, and surface area.

< Tangent
Suppose we have a parametric curve: x = f (t) y=g ( t) . To find the slope of the tangent line at a

point on this curve, denoted by % , J and g should be differentiable functions and also y needs to be
X

v dv fdx

differentiable with respect to x. Then the Chain Rule gives us: —'; =
#f dx

dy
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Example 1: Find the equation of the tangent line to jiypamag the given curve where ¢ = e
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dy
Since @-=it-, the curve has a: 4} {
dx  dx
dt Moy ‘)vla’r&-

{2 1Y

. . d’
We can use this information to sketch parametric equations. Also finding the second derivative ( 7 ’2‘)]
X

d
would help us with concavities of the curve. To do that we replace y by _dl ¢
/x

f’i(_dl] - d’y
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We know that the area under a curve y = F(x) fromatobis 4 =I 54' ;fc }ail!};' where F(x) >0. Ifthe

curve is traced out ¢iice by the parametric equations: & = 7 { dnd Voot f) a<t< [}, then we can

calculate an area formula by using th\’ubstltutmn Rule for Deﬂmte Integrals as follows:
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Example 3: Find the area enclosed by the astroid

P Ymsin e 0<t<2rx. -
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© x=acos}(@), y = asin’(@)
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< Arc Length

Recall that we defined the arc length of function y = f ( x) over an interval as:

The Arc Length formula: If /' is continuous on [a,b] , then the length of the curve

y=f(x)ona<x<bis L= fk zji ff‘g\s‘;: dx oras L= Ib \/1 +[%] dx in Leibniz notation.

Now we need to define arc length for a parametric curve:

. 2

L= j\/1+L;{J é

L - >
Mam’f\/’a{’e
=“- i 16

Thus if a curve C is described by the parametric equations x = f'(¢) and y = g(t), a<t< B where f'

and g' are continuous on [a, B ] and C is traversed exactly once as ¢ increases from & to [, then the

length of C'is:
2 2
-f? [E]+(2] a
« dt dt
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Example 4: Find the isngih of the oirele of redius » defined parametrically by: C ,'."\, w M W
x=rcost; y=rsinton 0<t<2rx C: . Q’Tr{s
-

e

)

S—m’ r J;,\Pﬁb—f oo;;dt
o

W

4

= e

Page 6 of 8

10.2 Page 7



Section 10.2: Calculus with Parametric Curves
Math 163: Calculus 11l (Fall 2022)

Example 5: Find the length of the astroid: x =cos’t; y=sin’t on 0<¢ <27 i " €o
e ——
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| The Astroid: The astroid is not a?stggi_d, The latter is rock or small planet in outer space. The astroid

' is a curve that has four points. It derives its name from astrois, the Greek word for “star.” The curve has
had many names, but its modern name was given to it by Joseph Johann von Littrow in 1838. von
Littrow was an Austrian astronomer who wrote a widely read book, “Miracles of the Sky.” There is a
(likely apocryphal) story that von Littrow proposed digging a large circular canal in the Sahara Desert and
filling it with burning kerosene. The goal of this was to tell aliens that we are here!
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++ Surface Area

Recall from your book, in the case where f'is positive and has a continuous derivative, we define the
surface area of the surface obtained by rotating the curve y = f ( x),a < x<b, about the x-axis as:

2
S= [1)27rf(x),/1+|—f'(x)~lzdx oras S = |.b27[y‘fl+(i—| dx in Leibniz notation.
wva v — - va V LaxJ

In the same way as for arc length, we can obtain a formula for surface area. If the curve given by the
parametric equations x = f (1) and y =g (¢), @<t < /3 is rotated about the x-axis, where f', g' are

continuous and g (l‘) > 0, then the area of the resulting surface is given by:

2 2
B d. d
s=[" 27y | =] +| 2| a
a dt dt
Example 6: The standard parametrization of the circle of radius 1 centered at the point (0, 1)in the xy —

planeis: x=cost; y=1+sinf on 0<¢1 <27

Use this parametrization to find the area of the surface swept out by revolving the circle about the x-axis.
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