Fall 2023
Assessment 6
Dusty Wilson
No work $=$ no credit

He knew he couldn't tell stories, that he always included extraneous details and tangents that interested only him. John Green
1977 - present (American author)

1. (3 points) Warm-ups
(a) $\frac{d}{d x} \sin \left(x^{2}\right)=$
(b) $\frac{\partial}{\partial x} \arctan (x)=$
(c) $\frac{\partial}{\partial y} y \sin \left(x^{2}\right)=$
2. (1 point) What does it mean to "go off on a tangent"? Answer using complete English sentences.
3. (8 points) Consider $z=3 x+4 y^{2}$
(a) (4 points) Find the tangent plane (linear approximation) at the point $A(2,3)$
(b) (4 points) If (x, y) changes from $A(2,3)$ to $B(1.7,3.1)$ compare the values of Δz and $d z$
4. (4 points) If $z=3 x \sin (2 y), x=e^{r t}$, and $y=r \ln r t$, find $\frac{\partial z}{\partial t}$. Your result may include the variables: x, y, r, and t
5. (14 points) Consider the function $g(x, y)=2 x^{3}-3 x y^{4}$
(a) (4 points) Find the gradient at point $A(2,1)$
(b) (4 points) Find and interpret the (i.) direction and (ii.) magnitude of the gradient at point A. Your answers should include both vectors/numbers and a written interpretation.
(c) (2 points) At point A, in what direction $\langle x, y\rangle$ should we travel if we want our height on g to remain constant (NOT change)? Hint: There are multiple correct answers.
(d) (4 points) Find the directional derivative of g at point A in the direction of the vector $\vec{v}=\langle 8,15\rangle$
6. (4 points) Consider the contour plot (topographical map) of the mountains near Snoqualmie Pass where $z=f(x, y)$ gives the altitude in feet at a point (x, y) where x and y have the traditional orientation. The solid black line(s) show level curves at 5,000 feet.

(a) (1 point) On the contour plot, clearly sketch at least 5 possible gradient vectors near Lake Cle Elum
(b) (1 point) On the contour plot, clearly mark with a \diamond the point(s) of the level curve near Thomas Mtn where $f(x, y)=5000$ at which $f_{x}=0$ and $f_{y}<0$
(c) (1 point) On the contour plot, clearly mark with a \triangle the point(s) of the level curve near Thomas Mtn where $f(x, y)=5000$ at which the slope is smallest $(|\nabla f|$ is small $)$.
(d) (1 point) Beginning at point B, clearly sketch the path of steepest ascent.
