Math 163 Fall 2023 Assessment 6 Dusty Wilson No work = no credit 1. (3 points) Warm-ups	Name:	He knew he couldn't tell stories, that he al- ways included extraneous details and tan- gents that interested only him. John Green 1977 - present (American author)
(a) $\frac{d}{dx}\sin(x^2) =$	(b) $\frac{\partial}{\partial x} \arctan(x) =$	(c) $\frac{\partial}{\partial y}y\sin(x^2) =$

2. (1 point) What does it mean to "go off on a tangent"? Answer using complete English sentences.

3. (8 points) Consider $z = 3x + 4y^2$

(a) (4 points) Find the tangent plane (linear approximation) at the point A(2,3)

(b) (4 points) If (x, y) changes from A(2, 3) to B(1.7, 3.1) compare the values of Δz and dz

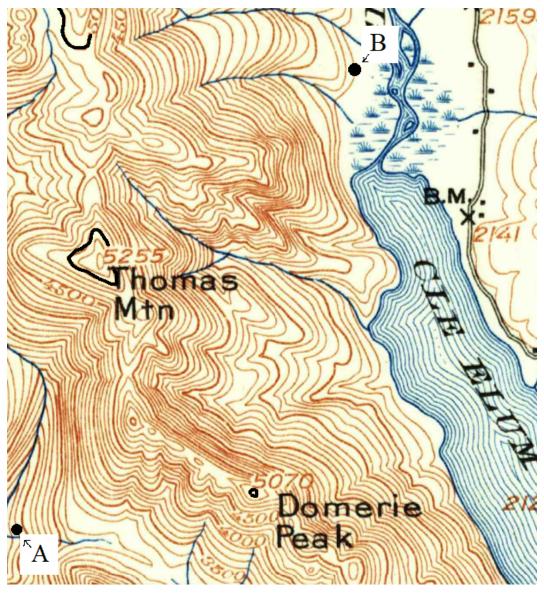
4. (4 points) If $z = 3x \sin(2y)$, $x = e^{rt}$, and $y = r \ln rt$, find $\frac{\partial z}{\partial t}$. Your result may include the variables: x, y, r, and t

- 5. (14 points) Consider the function $g(x, y) = 2x^3 3xy^4$
 - (a) (4 points) Find the gradient at point A(2,1)
 - (b) (4 points) Find and interpret the (i.) direction and (ii.) magnitude of the gradient at point A. Your answers should include both vectors/numbers and a written interpretation.

(c) (2 points) At point A, in what direction $\langle x, y \rangle$ should we travel if we want our height on g to remain constant (NOT change)? Hint: There are multiple correct answers.

(d) (4 points) Find the directional derivative of g at point A in the direction of the vector $\vec{v} = \langle 8, 15 \rangle$

6. (4 points) Consider the contour plot (topographical map) of the mountains near Snoqualmie Pass where z = f(x, y) gives the altitude in feet at a point (x, y) where x and y have the traditional orientation. The solid black line(s) show level curves at 5,000 feet.



- (a) (1 point) On the contour plot, clearly sketch at least 5 possible gradient vectors near Lake Cle Elum
- (b) (1 point) On the contour plot, clearly mark with a \diamondsuit the point(s) of the level curve near Thomas Mtn where f(x, y) = 5000 at which $f_x = 0$ and $f_y < 0$
- (c) (1 point) On the contour plot, clearly mark with a \heartsuit the point(s) of the level curve near Thomas Mtn where f(x, y) = 5000 at which the slope is smallest ($|\nabla f|$ is small).
- (d) (1 point) Beginning at point B, clearly sketch the path of steepest ascent.