Assessment 4
Dusty Wilson
Math 163
No work = no credit

Name: key.
I have hardly ever known a mathematician who was capable of reasoning.

Plato
427 - 347BC (Greek philosopher)
Warm-ups (1 pt each):
$\vec{i} \cdot \vec{k}=$

$$
\vec{i} \cdot \vec{i}=1
$$

1.) (1 pt) Based upon Plato's experience (above), how good were mathematicians at thinking/reasoning? Answer using complete English sentences.
Mathematicians were mod good a reasoning.
2.) (5 pts) Find the equation of the tangent line to the cycloid $x=3(\theta-\sin \theta)$ and $y=3(1-\cos \theta)$ at the point where $\theta=\frac{\pi}{3}$.

$$
\begin{aligned}
& \text { where } \theta=\frac{\pi}{3} \text {. } \\
& \text { weed (1) point } \rightarrow x=3\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) \&-y=3\left(1-\frac{1}{2}\right) .
\end{aligned}
$$

Page 1 of 2
3.) (5 pts) Use the calces 8 of parametric curves to derive the circumference of a circle with radius one To do this, first parametrize the unit circle making sure to include limits of mentation find the length of the curve.
your parameter.
(1) parametrize

$$
x=\cos t
$$

$$
y=\sin 8
$$

$$
\text { op } 0 \leq x \leq 2 \pi
$$

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{(-\sin t)^{2}+(\cos t)^{2} d t} \\
& =\int_{0}^{2 \pi} \sqrt{1} d t \\
& =\int_{0}^{2 \pi} 1 d t \\
& =2 \pi
\end{aligned}
$$

4.) $(5 \mathrm{pts})$ If $\vec{r}(t)=\left\langle 1+t^{3}, t e^{-t}, \sin 2 t\right\rangle$, find the unit tangent vector at the point $(1,0,0)$
$\begin{aligned} & \text { (1) find the point } / \text { time. } \\ & t=0 .\end{aligned}$
(2) find $\vec{r}^{\prime}(t)$

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\left\langle 3 t^{2}, e^{-t}-t e^{-t}, 2 \cos 2 t\right\rangle \\
& \text { ard } r^{\prime}(0\rangle=\langle 0,1,2\rangle
\end{aligned}
$$

(3) Find $\left|\vec{r}^{\prime}(0)\right|=\sqrt{0+1+4}=\sqrt{5}$
(4) $\vec{T}(0)=\frac{1}{\sqrt{5}}\langle 0,1,2\rangle$.

