Monday, January 23, 2023 8:38 PM

Math 163 Page 1

Assessment 2
Dusty Wilson
Math 163
No work = no credit

Name:

It appears to me that if one wishes to make progress in mathematics, one should study the masters and not the pupils.

Niels Henrik Abel
1802-1829 (Norwegian mathematician)

Warm-ups (1 pt each): $\quad 9+10=\underline{19} \quad-\frac{4}{0}=\underline{\text { undefined }} \quad-1^{2}=-1$
Abel
1.) (1 pt) According to Renosey (above), who should we learn from? Answer using complete English sentences.

We do well to learn only from
the best experts.
2.) (5 pts) If $\vec{u}=\langle 0,-3,4\rangle$ and $\vec{v}=\langle 2,-1,-2\rangle$ find the following:
a.) $|\bar{u}|=\sqrt{0^{2}+(-3)^{2}+y^{2}}=\sqrt{25}=5$
b.) $5 \stackrel{\rightharpoonup}{v}=5\left\langle z_{2}-1,-2\right\rangle=\langle 10,-5,-20\rangle$
c.) $\bar{u}+\vec{v}=\langle 0,-3,4\rangle+\langle 2,-1,-2\rangle=\langle 2,-4,2\rangle$
d.) $\vec{u}-\vec{v}=\langle 0,-3,4\rangle-\langle 2,-1,-2\rangle=\langle-2,-2,6\rangle$
e.) $3 \bar{u}+2 \bar{v}=3\langle 0,-3,4\rangle+2\langle 2,-1,-2\rangle=\langle 4,-11,8\rangle$
3.) (2 pts) Find $\langle 1,-2,-1\rangle \cdot\langle-6,2,-3\rangle$

$$
\begin{aligned}
& =-6+(-4)+3 \\
& =-7 .
\end{aligned}
$$

Page 1 of 2
4.) (4 pts) Find a unit vector \vec{v} in the direction of the vector from $P(1,0,1)$ to $Q(3,2,0)$.

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle 3,2,0\rangle-\langle 1,0,1\rangle=\langle 2,2,-1\rangle \\
& |\overrightarrow{P Q}|=\sqrt{4+4+1}=3 \\
& \text { unit }=\frac{1}{\xi}\langle 2,2,-1\rangle \\
& \text { vector }
\end{aligned}
$$

5.) (4 pts) Find the angle between $\vec{a}=\vec{i}-2 \vec{j}-2 \vec{k}$ and $\vec{b}=6 \vec{i}+3 \vec{j}+2 \vec{k}$ (in radians).

$$
\begin{array}{rlrl}
\text { recall| } \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta & \vec{a} \cdot \vec{b} & =b+(-6)-4 \\
\Rightarrow \theta & =\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right) & & =-4 \\
& =\cos ^{-1}\left(-\frac{4}{21}\right) & |\vec{a}|=\sqrt{1+4+4}=3 \\
\mid \vec{b}) & \sqrt{36+9+4}=7
\end{array}
$$

6.) (4 pts) Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}+3 x-4 z+1=0$
complete the square.

$$
\begin{gathered}
\left(x^{2}+3 x+\frac{9}{4}\right)+y^{2}+\left(z^{2}-4 z+4\right)=-1+4+\frac{9}{4} \\
\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \Rightarrow\left(x+\frac{3}{2}\right)^{2}+y^{2}+(z-2)^{2}=\frac{21}{4} \\
\quad \text { certere }\left(-\frac{3}{2}, 0,2\right) w / \text { radius } \sqrt{\frac{2}{4}} \\
\quad(\operatorname{Page} 2 \text { of } 2
\end{gathered}
$$

