

FIGURE 5 The coordinate mapping from V onto \mathbb{R}^{n}.
Page 3 of 6
4.4: Coordinate Systems

Theorem 8
Let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then the coordinate

A one-to-one linear transformation from a vector space V onto a vector space W is called an isomorphism from vonto W. Essentially, these two vector spaces are indistinguishable.
Ex 4: Let B be the standard basis of the space \mathbb{P}_{3} of polynomials; that is, let:

Ex 5: Use coordinate vectors to test the linear independence of the sets of polynomials
a) $1+2 t^{3} y^{2+t-3 t^{2}}-t+2 t^{2}-t^{3}$ a

$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right]\left[\begin{array}{c}2 \\ 1 \\ -3 \\ 0\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 2 \\ -1\end{array}\right] \xrightarrow{1}\left[\begin{array}{ccc|c}1 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -3 & 2 & 0 \\ 2 & 0 & -1 & 0\end{array}\right]$
cant make
$\left[P_{1}\right]_{B}\left[P_{2}\right]_{B}\left[P_{3}\right]_{B} \quad \sim\left[\begin{array}{lll|l}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ from the

 $P_{3}\left[x_{B}\right]_{B}=\vec{x}$

$$
\vec{x}=\left[\begin{array}{l}
3 \\
12 \\
7
\end{array}\right] \text { (2) Graphing. }
$$

$$
[\vec{x}]_{D}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

4. Coordinate spletems

$$
\begin{aligned}
& \text { Practice Problems } \\
& \text { 1. Let } \mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}
-3 \\
4 \\
0
\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{r}
3 \\
-6 \\
3
\end{array}\right] \text {, and } \mathbf{x}=\left[\begin{array}{r}
-8 \\
2 \\
3
\end{array}\right] .
\end{aligned}
$$

$$
\text { (c.) } A_{B}[\vec{x}]_{B}=\vec{x}
$$

a. Show that the set $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is a basis of \mathbb{R}^{3}.
b. Find the change-of-coordinates matrix from B to the standard basis.
c. Write the equation that relates x in \mathbb{R}^{3} to $[\mathbf{x}]_{B}$.

OR

$$
\rho_{D}^{-1} \vec{x}=[\vec{x}]_{B}
$$

(a.)

$$
\text { d. Find }\left[\frac{\mathbf{x}}{\frac{x_{B}}{}, \text { for the } \mathrm{x} \text { given above. }}\right.
$$

$$
P_{D}=\left[\begin{array}{ccc}
b_{1} & b_{2} & b_{2} \\
1 & -3 & 3 \\
0 & 4 & -6 \\
0 & 0 & 3
\end{array}\right] \text { has a pivot in every }
$$

ir \mathbb{R}^{3} must form a basis for \mathbb{R}^{3}.

(b.) \square [x] so the ρ_{A} matrix $P_{B}:[\bar{x}]_{\theta} \longmapsto \vec{x}$

coordinate vector of $\mathbf{p}(t)=$.
$\mathbb{P}_{2} \leftrightarrow \mathbb{R}^{3}$

$$
\text { That } \begin{aligned}
p(t)= & 5(1+k)_{+}^{+} \\
& 1(\text { we })_{+}
\end{aligned}
$$

AP D $\bar{x}=\left[\begin{array}{l}\text { 奚 } \\ \text { 滕 }\end{array}\right]_{\text {Page } 6 \text { of } 6}$ - 2 (y).

((*)

