Exploring Applications of Linear Algebra

Linear thinking

Tim Chartier DAVIDSON

Department of Mathematics tichartier@davidson.edu

This webinar was made possible, in part, with funding from the Associated Colleges of the South.

5 clicks to Jesus

A form of Wikiracing that mimics golf

Challenge:

 Surf from a Random Article to the Jesus entry of Wikipedia in as few clicks as possible.

WIKIPEDIA

- Reaching the article in 5 clicks is considered 'par', with clicks over or under five being referred to as 'bogeys' and 'birdies' respectively.
- Lowest score wins!

Random start

You can also compete against others in this game by visiting:

http://thewikigame.com/5-clicks-to-jesus

Random page on wikipedia

HOW MANY CLICKS?

Terminology

As you surfed through Wikipedia, you:

- clicked a link (*outlink* or *hyperlink*) on a web page to go to another page.
- used the hyperlink structure of Wikipedia to surf. That is, you got from one place to another only by clicking links.

A web address is also called a URL.

Query

- Your Wikipedia surfing will help us understand the linear algebra used by Google.
- Suppose you submit the word "mathematics" to Google.

Ranked results

A ranked list of web pages is returned.

PageRank

- Assuming 2 web pages are deemed equally relevant to a query, why is one page ranked over the other?
- Google measures the quality of pages.
- Quality pages are linked by quality pages!

Random Surfer

PageRank measures quality by the hyperlink

structure of the web.

• It models internet activity as as the actions of a random surfer who randomly follows links on a web page.

Chance visit

- Suppose a random surfer surfed the web indefinitely.
- The probability he visits a web page is that pages PageRank.
- Higher PageRank correlates to higher quality.

Linkedin

- Earlier, we surfed only be following links.
- This isn't a realistic model of surfing.
- Why?

Caught dangling

• If you can't jump, you can get stuck!

Web pages with no outlinks are called

dangling nodes.

Teleporting

The PageRank model assumes

- 85% chance of following a hyperlink on a page
- 15% chance of jumping to any web page in the network (with uniform probability).

Google in Monte Carlo

We can use Monte Carlo simulation to determine the quality of pages.

Simulation

- Let's compute with simulation.
- We'll use a die as a random number generator.

Run

Web page 1 wins!

Run 2

Web page 1 wins!

Google-opoly

- Let's compute with simulation using a die as a random number generator.
- For more details see the Loci article "Google-oply" by C., Kreutzer, Langville and Pedings available at:

http://mathdl.maa.org/mathDL/23/? sa=viewDocument&pa=content&nodeId=3355

linear algebra?

Wait a minute? Where is the linear algebra?

Billion-sided die?

- Rather than Google rolling some billion-sided die, it uses linear algebra.
- In fact, we use math ideas developed 100 years ago.

Wiki-Jesus

- Let's return to the 5-clicks to Jesus exercise.
- Here is a path from the Family Guy to Jesus pages on Wikipedia.
- Let's consider
 Google's model
 constrained only to
 this network.

Probable surfing

Under Google's model, if you are at the Family

Guy web page, what is the probability of:

 visiting the page listing episodes?

• visiting Jesus?

Probable surfing

Under Google's model, if you are at the Family

Guy web page, what is the probability of:

 visiting the page listing episodes?

.85 + .15/4 = .8875

• visiting Jesus?

.0375

Leaning on Markov

- Finding the probability of visiting web page j from web page i allows us to use Markov Chains (processes).
- First used for linguistic purposes to model the letter sequences in works of Russian literature.

Andrei Andreevich Markov (1856 - 1922)

Enter the matrix

We create a transition matrix G where g_{ij} equals the probability of moving from web page i to web page j.

Time to Order

First, order the columns (and rows)

column 3

column 4

ROW

The first row contains the probabilities of jumping from web page 1 to other web pages.

 $(0.0375 \quad 0.8875 \quad 0.0375 \quad 0.0375)$

row, row, row

So, the entire transition matrix becomes:

$$G = \begin{pmatrix} 0.0375 & 0.8875 & 0.0375 & 0.0375 \\ 0.4625 & 0.0375 & 0.4625 & 0.0375 \\ 0.3208 & 0.3208 & 0.0375 & 0.3208 \\ 0.2500 & 0.2500 & 0.2500 & 0.2500 \end{pmatrix}$$

Note: The entries of each row sum to 1.

baby steps

- We can then walk through a series of steps.
- Assume we start at Family Guy, then

The one step

• Since

```
\mathbf{v}_0 G = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0.0375 & 0.8875 & 0.0375 & 0.0375 \\ 0.4625 & 0.0375 & 0.4625 & 0.0375 \\ 0.3208 & 0.3208 & 0.0375 & 0.3208 \\ 0.2500 & 0.2500 & 0.2500 & 0.2500 \end{pmatrix}
= \begin{pmatrix} 0.0375 & 0.8875 & 0.0375 & 0.0375 \\ 0.8875 & 0.0375 & 0.0375 \end{pmatrix}
= \mathbf{v}_1
```

 We know the probability of being at each web page after one step assuming we start at web page 1.

Step by step

Where will you be after two steps?

$$\mathbf{v}_{1}G = \begin{pmatrix} 0.0375 \\ 0.8875 \\ 0.0375 \\ 0.0375 \end{pmatrix}^{T} \begin{pmatrix} 0.0375 & 0.8875 & 0.0375 & 0.0375 \\ 0.4625 & 0.0375 & 0.4625 & 0.0375 \\ 0.3208 & 0.3208 & 0.0375 & 0.3208 \\ 0.2500 & 0.2500 & 0.2500 & 0.2500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.4333 & 0.0880 & 0.4227 & 0.0561 \end{pmatrix}$$

$$= \mathbf{v}_{2}$$

 But, how do we find the probability of being at each web page after infinitely many steps?

Iterating

Note that:

$$v_{2} = v_{1}G = v_{0}G^{2},$$
 $v_{3} = v_{2}G = v_{0}G^{3},$
 \vdots
 $v_{n} = v_{n-1}G = v_{0}G^{n},$

Lotsa steps

So, let's take many more steps:

$$\mathbf{v}_{0}G^{100} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}^{T} \begin{pmatrix} 0.0375 & 0.8875 & 0.0375 & 0.0375\\0.4625 & 0.0375 & 0.4625 & 0.0375\\0.3208 & 0.3208 & 0.0375 & 0.3208\\0.2500 & 0.2500 & 0.2500 & 0.2500 \end{pmatrix}^{100}$$

$$= \begin{pmatrix} 0.2836 & 0.3682 & 0.2210 & 0.1271 \end{pmatrix}$$

$$= \mathbf{v}_{100} = \mathbf{v}_{200} \text{ (to 4 decimal places)}$$

We have converged to the steady-state vector.

Steady

- In fact, for this vector, we reach steady state (to 4 decimal places) at the 18th step, which will be very important to Google.
- This gives us the PageRank of these pages:

$$\mathbf{v} = \begin{pmatrix} 0.2836 & 0.3682 & 0.2210 & 0.1271 \end{pmatrix}$$

Keep in mind that Google indexes billions of web pages!

Image thanks to David Gleich

Questions!

- Will this process converge for any network of web pages?
- Is there more than one steadystate vector?
- Will this scale up to billions of pages?

Stepping in place

The steady-state vector has property:

$$VA = V$$

- This relationship means that the vector v is an eigenvector of A with an associated eigenvalue of 1.
- Recall if v is an eigenvector of A then cv is an eigenvector of A for any nonzero scalar c.
- We want cv such that the elements of v sum to 1.

Unique solution

- Why does this Markov process converge to an e-vector associated with the e-value 1?
- Further, is this even a unique eigenvector?
- Both are guaranteed for PageRank.

Theorem (Perron) Every real square matrix *P* who entries are all positive has a unique eigenvector with all positive entries, its corresponding eigenvalue has multiplicity one, and it is the dominant eigenvalue, in that every other eigenvalue has strictly smaller magnitude.

Time to dominate

- Let M be a Markov transition matrix.
- The rows of M sum to 1. So, M1 = 1, where 1 is the column vector of all ones.
- So, **1** is a right eigenvector of *M* associated with the eigenvalue 1.
- Perron's Theorem ensures that 1 is the unique right eigenvector with all positive entries, and hence its eigenvalue must be the dominant one.

Right from the left

- The right and left <u>eigenvalues</u> of a matrix are the same, therefore 1 is the dominant left eigenvalue as well.
- So, there exists a unique steady-state vector
 v that satisfies vM = v.
- Normalizing this eigenvector so the sum of its entries are 1 gives <u>the</u> steady-state vector.
- Perron's Theorem also guarantees this vector has positive entries.

Converging

To find PageRank, one simply iterate with:

$$V_{n+1} = V_nG$$

until we have convergence.

 Why does this Markov process converge to the dominant e-vector? We will use:

$$|\lambda^n| \to 0 \text{ as } n \to \infty \text{ if } |\lambda| < 1,$$
 $|\lambda^n| = 1 \text{ for all } n \text{ if } |\lambda| = 1,$
 $|\lambda^n| \to \infty \text{ as } n \to \infty \text{ if } |\lambda| > 1,$

Full combo

- Assume M has n linear independent eigenvectors.
- Let's take an arbitrary initial guess x
- We can express it as a linear combination of the eigenvectors

$$\mathbf{x}^{(0)} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + ... + c_n \mathbf{v}_n$$

Full combo

After one iteration of the Markov chain:

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} M$$

$$= c_1 \mathbf{v}_1 M + c_2 \mathbf{v}_2 M + \dots + c_n \mathbf{v}_n M$$

$$= c_1 \lambda_1 \mathbf{v}_1 + c_2 \lambda_2 \mathbf{v}_2 + \dots + c_n \lambda_n \mathbf{v}_n$$

Multiplying again by M yields

$$\mathbf{x}^{(2)} = \mathbf{x}^{(1)} M$$

$$= c_1 \lambda_1 \mathbf{v}_1 M + c_2 \lambda_2 \mathbf{v}_2 M + \dots + c_n \lambda_n \mathbf{v}_n M$$

$$= c_1 \lambda_1^2 \mathbf{v}_1 + c_2 \lambda_2^2 \mathbf{v}_2 + \dots + c_n \lambda_n^2 \mathbf{v}_n$$

Establishing a pattern

• In general:

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} M$$

$$= c_1 \lambda_1^k \mathbf{v}_1 + c_2 \lambda_2^k \mathbf{v}_2 + \dots + c_n \lambda_n^k \mathbf{v}_n$$

- Recall, we know from Perron's theorem that $\lambda_1 = 1$ and $\lambda_i < 1$ for i > 1.
- So, our Markov process will converge to c_1 **v**.
- But, c_1 will equal 1 since the sum of the entries of \mathbf{x}_0 is 1.

Answers!

- Will this process converge for any network of web pages?
- Is there more than one steadystate vector?
- Will this scale up to billions of pages?

Googling Twitter

- Let's try this entire process on a group of web pages.
- In particular, we'll take pages from Twitter for the celebrities below.

Twitter on the Web

- The names are listed in terms of the celebrity's screen name on Twitter.
- If you want to view Bill Gates' Twitter web page at http://www.twitter.com/billgates.
- You don't need a Twitter account to view this webpage.

Graphic Celebrities

 Here is the graph of connectivity of the celebrities on Twitter.

 There is an edge from celebrity A to celebrity B if celebrity A follows celebrity B on Twitter.

Google matrix

First, we form the Google matrix:

$$G = \begin{pmatrix} 0.025 & 0.025 & 0.0250 & 0.025 & 0.8750 & 0.0250 \\ 0.025 & 0.025 & 0.3083 & 0.025 & 0.3083 & 0.3083 \\ 0.025 & 0.025 & 0.0250 & 0.025 & 0.8750 & 0.0250 \\ 0.025 & 0.450 & 0.0250 & 0.025 & 0.4500 & 0.0250 \\ 0.195 & 0.195 & 0.1950 & 0.195 & 0.0250 & 0.1950 \\ 0.195 & 0.195 & 0.1950 & 0.195 & 0.1950 & 0.0250 \end{pmatrix}$$

Different perspectives

Let's compute PageRank in 3 different ways.

Picture credit: http://www.halogensoftware.com/blog/wp-content/uploads/2011/08/different-perspectives.gif

Method

The first technique to finding the PageRank for these web pages is to compute:

$$\mathbf{v}^{100} = [1 \ 0 \ 0 \ 0 \ 0] M^{100}$$

$$\mathbf{v} = (0.1071 \quad 0.1526 \quad 0.1503 \quad 0.1071 \quad 0.3544 \quad 0.1285)$$

Note: Taking a matrix to a high power is impractical computationally for a large number of web pages.

Method 2

Iterate:

$$V_{k+1} = V_k M_{\ell}$$

until the elements of \mathbf{v}_k have suitably converged.

$$\mathbf{v} = \begin{pmatrix} 0.1071 & 0.1526 & 0.1503 & 0.1071 & 0.3544 & 0.1285 \end{pmatrix}$$

Note: This is the Power Method and is the algorithm of choice for computing PageRank.

Method 3

Compute the (left) eigenvectors of M

 $V = \lambda V M$.

Note, you are finding a LOT more information than needed.

• From linear algebra classes, we know how to find right eigenvectors. As such, we simply find eigenvectors of M^T .

Changing rulers

- Remember, if v is an eigenvector of M then so is cv.
- As such, a software program has infinitely many choices to return as the dominant eigenvector.

Being square

• For our Twitter network, the dominant eigenvector with length 1 under the 2-norm is:

```
egin{pmatrix} \left( 0.2332 & 0.3323 & 0.3273 & 0.2332 & 0.7717 & 0.2798 
ight) \\ \text{since} \\ \end{pmatrix}
```

```
1 = \sqrt{(0.2332)^2 + (0.3323)^2 + (0.3273)^2 + (0.2332)^2 + (0.7717)^2 + (0.2798)^2}
```

- We want a vector where the sum of the entries is 1.
- Can you think how to do this?

To be 1

• For any vector v, the following will be a parallel vector with entries that sum to 1.

$$\left(\frac{1}{\sum_{i=1}^{n} v_i}\right) \mathbf{v}$$

• Now,

$$2.1775 = 0.2332 + 0.3323 + 0.3273 + 0.2332 + 0.7717 + 0.2798$$

PageRank

Therefore, the vector we want for the Twitter network is:

$$\left(\frac{1}{2.1775}\right) \left(0.2332 \quad 0.3323 \quad 0.3273 \quad 0.2332 \quad 0.7717 \quad 0.2798\right)$$

$$\mathbf{v} = \begin{pmatrix} 0.1071 & 0.1526 & 0.1503 & 0.1071 & 0.3544 & 0.1285 \end{pmatrix}$$

Further exploration

 Want to dive further into this topic?

Teleportation

- Earlier, we took the teleportation parameter to equal 0.85.
- Change this value so it is closer to 1. Then,
- change it so it is closer to 0.
- What impact does this have on convergence? What impact does it have on the ranking?

- HITS is an alternative algorithm for ranking.
- Implement this algorithm, that also uses linear algebra.
- How do the results vary from PageRank?

Application

- Applying PageRank to other networks from fields such as biology or archeology.
- Do you have a directed graph? Could PageRank be applied?
- You could even try sports ranking!

Scalability

- How does PageRank scale up to billions of pages?
- A key is expressing the Google matrix in a
 - different form so you only store the (sparse) adjacency matrix and a vector.
- Else, you store an *n* x *n* dense matrix.

Just for fun...

To motivate the random surfer outlook on PageRank, see the video at:

http://vimeo.com/11548769

A mysterious package

In the video, Emmie receives a mysterious package with Google goggles.

Virtual world

- She enters Google-topia and meets Randy the random surfer.
- They surf that world's web and discover the ideas of Brin and Page, founders of Google.

