




















PageRank

* Assuming 2 web pages are deemed equally
relevant to a query, why is one page ranked
over the other?

* Google measures the quality of pages.

* Quality pages are linked by quality pages!




Random Surfer

* PageRank measures quality by the hyperlink
structure of the web.

* |t models internet activity as
as the actions of a random
surfer who randomly follows

links on a web page.

http://3.bp.blogspot.com/ wC 5udlkdIQ/RwyBI9fKTQwWI/AAAAAAAAAAW/
jluvtvgR-dU/s400/surfer-dude-cartoon-sketch.jpg













































Leaning on NMarkov

* Finding the probability of
visiting web page j from
web page /i allows us to use

Markov Chains
(processes).

* First used for linguistic
purposes to model the
letter sequences in works

Of R usslan I Ite ratu re. Andre1 Andreevich Markov
(1856 - 1922)
















paby steps

 We can then walk through a series of steps.

* Assume we start at Family Guy, then
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The one step

e Since
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 We know the probability of being at each web

page after one step assuming we start at web

page 1.



Step by step

* Where will you be after two steps?

0.0375\ © /0.0375 0.8875 0.0375 0.0375

0.8875 0.4625 0.0375 0.4625 0.0375
0.0375 0.3208 0.3208 0.0375 0.3203
0.0375 0.2000 0.2000 0.2000 0.2500

VlG

— (0.4333 0.0880 0.4227 0.0561)
— V2

* But, how do we find the probability of being at
each web page after infinitely many steps?






Lotsa steps

So, let’s take many more steps:

5 70.0375 0.8875 0.0375 0.0375\ "

1

0 0.4625 0.0375 0.4620 0.0375
0 0.3208 0.5208 0.0375 0.3208
0 0.2000 0.2000 0.2000 0.2500

VOGl()O

(0.2836 0.3682 0.2210 0.1271)

V100 =— V200 (tO 4 decimal places)

We have converged to the steady-state vector.












Stepping in place

e The steady-state vector has property:
VA=V

e This relationship means that the vector v is
an eigenvector of A with an associated
eigenvalue of 1.

e Recall if vis an eigenvector of A then cv is an
eigenvector of A for any nonzero scalar c.

e \We want cv such that the elements of v sum
to 1.







Time to dominate

e et M be a Markov transition matrix.

e Therowsof Msumto1l. So, M1 =1, where 1
IS the column vector of all ones.

e S0, 1is aright eigenvector of M associated
with the eigenvalue 1.

e Perron's Theorem ensures that 1 is the
unique right eigenvector with all positive
entries, and hence its eigenvalue must be the

dominant one.



Right from the left

e The right and left eigenvalues of a matrix are
the same, therefore 1 is the dominant left
eigenvalue as well.

e S0, there exists a unique steady-state vector
v that satisfies vM = v.

e Normalizing this eigenvector so the sum of
its entries are 1 gives the steady-state
vector.

e Perron’s Theorem also guarantees this
vector has positive entries.






Full combo

e Assume M has n linear independent
eigenvectors.

e |et's take an arbitrary initial guess x

e \We can express it as a linear combination of
the eigenvectors

X0 =cv, +c,v,+..+CV



Full combo

o After one iteration of the Markov chain:
«(1) — x(0) g

c1viM + covolM 4+ -+ ¢, v, M
C1 )\1V1 —+- CQ)\QVQ i Cn)\nvn

e Multiplying again by M yields

ciANViM + corovoM + -+ 4+c, N\, v,, M
C1 )\%Vl 1 cz)\%vg 1o 4 cn)\%vn



Establishing a pattern

e |n general:
< (F)

e Recall, we know from Perron’s theorem that
A,=1land A.<1fori>1.

* S0, our Markov process will converge to c,V.

e But, ¢, will equal 1 since the sum of the
entries of X, is 1.



























Method 3

 Compute the (left) eigenvectors of M
vV = AV\V..

Note, you are finding a LOT more information
than needed.

* From linear algebra classes, we know how to

find right eigenvectors. As such, we simply
find eigenvectors of M'.






Being square

 For our Twitter network, the dominant
eigenvector with length 1 under the 2-norm is:

(0.2332  0.3323 0.3273 0.2332 0.7717 0.2798)

since

1 = +/(0.2332)2 + (0.3323)2 + (0.3273)2 + (0.2332)2 + (0.7717)2 + (0.2798)2

e We want a vector where the sum of the
entries Is 1.

* Can you think how to do this?



To be 1

* For any vector v, the following will be a
parallel vector with entries that sum to 1.

|
((Z?—l UJ) Y

21775 = 0.2332 + 0.3323 + 0.3273+
0.2332 4 0.7717 + 0.2798

* Now,
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