Math 220: Linear Algebra

Remember that the __multiplicative __ipverse or __reciprocal __of a number, say 7 is ___/___ or ______. The actual definition of this is that

$$\frac{1}{7} \cdot 7 = 1$$
 $7 \cdot \frac{1}{2} = 1$

 $\frac{1}{7} \cdot 7 = 1$ An $(n \times n)$ matrix A is called invertible if there is a matrix C such that

$$CA = I$$
 and $AC = I$

($I = I_n$ is the $n \times n$ identity matrix.)

Here, C is called the Truck of A. Is C unique?

proof.

Suppose there are two inverses B and c, of matrix A,

$$\Rightarrow B = BI = B(Ac) = (BA)c = Ic = C$$
 $\Rightarrow B = CQED$,

Yes, so denote the inverse with $A^{-1}\,$ and

$$A^{-1}A = I$$
 and $AA^{-1} = I$

Ex 1: If $A = \begin{bmatrix} -2 & -3 \\ 3 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} -5 & -3 \\ 3 & 2 \end{bmatrix}$, verify that $C = A^{-1}$.

$$AC = \begin{bmatrix} -2 & -3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} -5 & -3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$CA = \begin{bmatrix} -5 & -3 \end{bmatrix} \begin{bmatrix} -2 & -3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -2 & -3 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Theorem 4

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is not invertible.

This value ad-bc is called the <u>determinant</u> and we write

$$\det A = ad - bc$$

So theorem 4 states that A^{-1} exists iff $det A \neq 0$

Ex 2: Find the inverse of $A = \begin{bmatrix} 3 & -7 \\ 2 & 5 \end{bmatrix}$.

$$A^{-1} = \frac{1}{29} \begin{bmatrix} 5 & 7 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 5/29 & 7/29 \\ -2/29 & 3/29 \end{bmatrix}$$

Q.E.D.

If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

uniqueres Proof: existence.

Let \$ & R and invertible April be given. Tolve AX = # A AX = A T GIX = A T .. AX= b has a solution X= A'b. Let I, VER be solutions to AX = To ⇒ A太 = Av = 日 ⇒ A-Au = A'Av = A-1日

Ex 3: Use the inverse of the matrix
$$A = \begin{bmatrix} -2 & -3 \\ 3 & 5 \end{bmatrix}$$
 from Ex 1 $A^{-1} = \begin{bmatrix} -5 & -3 \\ 3 & 2 \end{bmatrix}$

$$A^{-1}b^{2} = \begin{bmatrix} -5 & -3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -7 \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$

$$50 \quad \overrightarrow{X} = \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$

Theorem 6

Proofs:

(a) Find C if

a. If A is an invertible matrix, then A^{-1} is invertible and

$$\left(A^{-1}\right)^{-1} = A$$

b. If A and B are n imes n invertible matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is,

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(AB)^{\top} = B^{\top}A^{\top}$$

$$(AB)^{\top} = B^{\top}A^{\top}$$

c. If A is an invertible matrix, then so is $A^T,\,$ and the inverse of A^T is the transpose of A^{-1} . That is,

Proofs:

$$(A^{T})^{-1} = (A^{-1})^{T}$$

$$(A) AB (B^{-1}A^{-1}) = ABB^{-1}A^{-1}$$

$$(A) Find C if$$

$$(A^{T})^{-1} = (A^{-1})^{T}$$

$$= ABB^{-1}A^{-1}$$

$$= AA^{-1}$$

$$= ABB^{-1}A^{-1}$$

$$= AB^{-1}A^{-1}$$

$$= AB^{-1}A^{-1$$

$$a = A$$
 and $C = I$
 $a = A$ is the inverse
of A^{-1} , or $(A^{-1})^{-1} = A$.

Page 3 of 5
$$AB(B^{-1}A^{-1}) = (B^{-1}A^{-1})AB = I$$

$$AB(B^{-1}A^{-1}) = (AB)^{-1}.$$

(c)
$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

And $(A^{-1})^{T}A^{T} = (AA^{-1})^{T} = I^{T} = I$
From Theorem 6b, we can extrapolate to the following.

The product of $n \times n$ invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order. (ABCD) = D'C-13-14-)

(Read pages 108-109 on Elementary Matrices)

We are going to look at finding the inverse of a matrix with a slightly different approach than this text.

If an $n \times n$ matrix A has an inverse, let's call that matrix B. Then

$$AB = I$$

This can be written as
$$\begin{bmatrix} Ab, & Ab_2 & \dots & Ab_n \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & \dots & e_n \end{bmatrix}$$

We can think of this as many systems, where each solution forms the columns vectors of our matrix B.

$$A\vec{b}_1 = \vec{e}_1$$
 $A\vec{b}_2 = \vec{e}_2$
 $A\vec{b}_{11} = \vec{e}_{12}$
 $A\vec{b}_{12} = \vec{e}_{13}$
 $A\vec{b}_{13} = \vec{e}_{13}$
 $A\vec{b}_{14} = \vec{e}_{13}$

We could solve each one of these individually, or stack them all together.

Ex 4: Find the inverse of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}$$
.

$$\begin{bmatrix} A : T \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 59 & -23 & -7 \\ -16 & 7 & 2 \\ -7 & 3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ -16 & 7 & 2 \\ -7 & 3 & 1 \end{bmatrix}$$

Theorem 7

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .

Algorithm for Finding A^{-1}

Row reduce the augmented matrix $[A \ I]$. If A is row equivalent to I, then $[A \ I]$ is row equivalent to $[I \ A^{-1}]$. Otherwise, A does not have an inverse.

Ex 5: Find the inverse of the matrix
$$A=\begin{bmatrix}1&-2&-1\\-1&5&6\\5&-4&5\end{bmatrix}$$
 , if it exists. (Do this by hand – more practice.)