Section 12.5: Equations of Lines and Planes Math 163: Calculus III (Fall 2022)

Equations of Lines and Planes

In this section we will learn how to use scalar and vector products to write equations for lines, line segments and planes in space. We will use these representations in chapter 13 and Calculus IV where the basic ideas will come up repeatedly.

* Lines and Line Segments in Space

In 2D, a line is determined by a point and the slope. In 3D, a line is determined by a point and the direction of the line which is described by a vector,

Suppose L is a line in space passing through a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel
to a vector $\vec{v}=a \vec{i}+b \vec{j}+c \vec{k}$. Then L is the set of all points $P(x, y, z)$ for
which $\overrightarrow{P_{0} P}$ is parallel to \vec{v}. Then for some scalar parameter $t \in(-\infty, \infty)$:

$$
\overrightarrow{P_{0} P}=t \vec{v}
$$

Note that the value of t depends on the location of the point P along the line.

If \vec{r} is the position vector of the arbitrary point $P(x, y, z)$ and \vec{r}_{0} is the position vector of thepqiol ine .

$\langle x, y, z\rangle=\left\langle x_{0}+t a, \quad y_{0}+t b, \quad z_{0}+t c\right\rangle$

Page 1 of 10

Hence:

$$
x=x_{0}+a t \quad y=y_{0}+b t \quad z=z_{0}+c t
$$

where $t \in \mathbb{R}$. These equations are called parametric equations of the line L through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the vector $\mathbf{v}=\langle a, b, c\rangle$. Each value of the parameter t gives a point (x, y, z) on L.

In general, if a vector $\mathbf{v}=\langle a, b, c\rangle$ is used to describe the direction of a line L, then the numbers a, b, and c are called direction numbers of $L<$ Similar to slope.

Example 1: Find parametric equations for the line through $(-2,0,4)$ parallel to $\vec{v}=2 \vec{i}+4 \vec{j}-2 \vec{k}$. And
come up with two other points on this line. $\vec{r}=\langle-2,0,4\rangle++\langle 2,4,-2\rangle \quad x=-2+2 t$
木-Another way of describing a line L is to eliminate the parameter t from the parametric equations. If none $y=4 t$
of a, b, and c is 0 , we can solve each these equations for t, equate the results, and obtain:

$$
\begin{aligned}
& \text { points on } \\
& \text { the line } \Rightarrow(-6,-8,8) \\
& t=-2 \Rightarrow t=3 \Rightarrow(4,12,-2)
\end{aligned}
$$

These equations are called symmetric equations of L. Notice that the numbers a, b, and c that appear in the denominators are the directions numbers of L, that is, components of a vector parallel to L. If one of a, b, or c is 0 , we can still eliminate t. For instance if $a=0$, we could write the equations of L as:

$$
x=x_{0} \quad \frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

This means that L lies in the vertical plane $x=x_{0}$.
Two lines in 3D are called skew lines if they don't intersect and are not parallel!
Example 2: Decide if the following lines are parallel, they intersect or are skew.

$$
\begin{aligned}
& L_{1}\left(\frac{x}{-1}=\frac{y-1}{-1}=\frac{z-2}{3}, \quad L_{2}: \frac{x-2}{1}=\frac{y-3}{-2}=\frac{z}{7}\right. \\
& \frac{x}{1}=\frac{x-2}{2} \\
& \Rightarrow 2 x=x-2 \\
& \Rightarrow x=-2 \\
& \frac{y-1}{-1}=\frac{y-3}{-2} \\
& \text { rot scalar } \\
& \text { multiples } \\
& \Rightarrow \text { wot parallel } \\
& \Rightarrow-2 y+2=-y+3 \\
& \Rightarrow(-1=y \text { These } \\
& \begin{array}{l}
\frac{-2}{?} \neq \frac{-1-1}{-1}=2 \\
\text { se are Sew lines }
\end{array}
\end{aligned}
$$

Example 3: Suppose we have two points $P(-3,2,-3)$ and $Q(1,-1,4)$.
a) Find parametric equations for the line passing through them.

$$
\vec{r}_{0}=\langle-3,2,-3\rangle
$$

$$
\vec{V}=\overrightarrow{P Q}=\langle 4,-3,7\rangle
$$

$$
\begin{align*}
\vec{r} & =\vec{r}_{0}+t \vec{v} \\
& =\langle-3,2,-3\rangle+t(4,-3,-7) \\
x & =-3+4 t \\
y & =2-3 t \\
z & =-3+7 t
\end{align*}
$$

NOTE: Parametrizations are not unique!

$$
\begin{aligned}
& x=1+4 t \\
& y=-1-3 t \\
& \frac{1}{z}=4+7 t
\end{aligned}
$$

b) Find symmetric equations of the line.

$$
t=\frac{x+3}{4}=\frac{y-2}{-3}=z+3
$$

c) At what point does this line intersects the
marripulate

projection
d) Parametrize the line segment joining the two points. $\Rightarrow \frac{9}{4}=z$

P

When $O \leqslant t$ page $\frac{1}{10} 10$

$$
\begin{aligned}
& t=0: \vec{r}=1\binom{\text { initial }}{\text { position }} \\
& t=1: \vec{r}=1\binom{\text { final }}{\text { position }}
\end{aligned}
$$

$$
13.67 \text { shows }
$$

a similar

$$
\text { as well ac } 13,6 \%
$$

Intersect the plane ©

$$
\vec{r}=\left(1-t\binom{\text { and initial }}{\text { posintond }}+t\binom{\text { final }}{\text { fositson }} \quad \text { Line }(t)=(1-t)\langle-3,2,-3\rangle+\right.
$$

$$
\begin{aligned}
& \text { when } \\
& t\langle 1,-1,4\rangle \\
& 0 \leq t \leq 1 \\
& p(-3,2,-3) z \\
& -2 \\
& \text { and } Q(1,-1,4)\}
\end{aligned}
$$

Suppose we want to find the equation of the line segment connecting the two points P_{0} (the "initial" point with position vector \vec{r}_{0}) and P_{1} (the "end" point with position vector \vec{r}_{1}). Let $\vec{v}=\vec{r}_{1}-\vec{r}_{0}$ then:

$$
\vec{r}=\vec{r}_{0}+t \vec{v}=\vec{r}_{0}+t\left(\vec{r}_{1}-\vec{r}_{0}\right)=(1-t)+t \vec{r}_{1}
$$

Where \vec{r} is the position vector for an arbitrary point P between P_{0}

The line segment from \mathbf{r}_{0} to \mathbf{r}_{1} is given by the vector equation

$$
\mathbf{r}(t)=(1-t) \mathbf{r}_{0}+t \mathbf{r}_{1} \quad 0 \leqslant t \leqslant 1
$$

* Equation for a Planes

To start, let's talk about two interesting relationships between a vector and a plane.

1) A vector is parallel to a plane if it lies on the plane, or else has no points in common with the plane. The latter happens when all the lines on the plane are either skew or parallel to that vector
2) A vector is perpendicular to a plane if it is orthogonal to all the vectors on the plane.

Suppose you have a point and a vector

1) How many planes exist that are parallel to the vector and include the point?

How many planes exist that are perpendicular to the vector and include the point?
So a plane is determined by knowing a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on the plane and its "tilt" or orientation. This "tilt" is defined by a vector that is orthogonal to the plane. This orthogonal vector \vec{n} is called a normal vector.

Let $P(x, y, z)$ be an arbitrary point on the plane that contains $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$. Then \vec{n} is perpendicular to $\overrightarrow{P_{0} P}$. That is:

$$
\vec{n} \cdot \overrightarrow{P_{0} P}=0
$$

This is called the vector equation of the plane.

$$
\begin{aligned}
& \text { Dorit memerize } \\
& \text { yet. }
\end{aligned}
$$

$$
\text { Page } 4 \text { of } 10
$$

Historical Note: There are a lot of formulas in this section which makes it easy to lose track of what you are doing. At the end of the day, you are just learning about linear equations. This isn't new; rather you've been exploring linear equations since pre-algebra (1 variable as in $2 x+3=4$) and then in algebra (2 variables as in $2 x+3 y=4$) and later systems of equations (such as $2 x+3 y=4 ; 5 x+6 y=7$). This section just expands linear into three dimensions!

In studying linear equations, you are carrying on an old tradition that spans at least Africa (Egypt), the middle-East (Babylon), Asia (China), and eventually even Europe caukht on once they adopted algebra from the Arabs and the number system used in India.

If this sounds cool, then you are going to love linear algebra where you spend a full term studying
systems of linear equations including their many applications.

Page 5 of 10

$$
\begin{aligned}
& \text { Section 12.5: Equations of Lines and Planes } \\
& \text { Math 163: Calculus III (Fall 2022) } \\
& \begin{array}{l}
\text { Example 4: Find an equation for the plane through } \underbrace{P_{0}(-3,0,7)}_{\text {Points }} \text { perpendicular to } \underbrace{\vec{n}=5 \vec{i}+2 \vec{j}-\vec{k}}_{\text {Non Ma }} \text {). }
\end{array} \\
& \text { place } \\
& 5(x-(-3))+2(y-0)-1(z-7)=0 \\
& \Rightarrow 5 x+15+2 y-z+7=0 \\
& \Rightarrow 5 x+2 y-z=-22 \\
& \begin{array}{l|l|l}
y=z=0 & x=z=0 & x=y=0 \\
x=-\frac{22}{5} & y=-11 & z=22
\end{array} \\
& \text { Example 5: Find an equation for the plane through } P(2,-1,3), Q(1,4,0) \text {, and } R(0,-1,5) \\
& \widehat{P Q}=\langle-1,5,-3\rangle\left\{\begin{array}{l}
\text { vectors } \\
\text { on the }
\end{array}\right. \\
& \overrightarrow{P R}=\langle-2,0,2\rangle\left\{\begin{array}{l}
\text { on place. }
\end{array}\right. \\
& \overrightarrow{P Q} \times \vec{P}=\vec{N} \text { normal } \\
& \vec{r}=\left|\begin{array}{ccc}
\frac{2}{2} & 3 & \vec{R} \\
-1 & 5 & -3 \\
-2 & 0 & 2
\end{array}\right| \\
& 10(x-2)+8(y+1)+10(z-3)=0 \\
& =\langle 10,+8,10\rangle \\
& \text { Page } 6 \text { of } 10
\end{aligned}
$$

Example 6. What is the relationship between the $\operatorname{li}, \begin{array}{llll}x=\frac{8}{3}+2 t & y=-2 t & z=1+t & \text { and the plane } \\ 3 x+2 y+6 z=6 & \text { How would you know if they are }\end{array}$ If they intersect find the intersection

$$
\vec{N}=\langle 3,2,6\rangle
$$

Test for parallel: $\langle 3,2,6\rangle \cdot\langle 2,-2,1\rangle$

$$
=6-4+6 \neq 0
$$

the live is not parallel to the plane
Does the live intersect the plane?

$$
\text { solve } 3\left(\frac{8}{3}+2 t\right)+2(-2 t)+6(1+t)=6
$$

$$
\Rightarrow 8+6 t-4 t+6+6 t=6
$$

$$
\begin{aligned}
& \Rightarrow q t=-8 \\
& \Rightarrow \Rightarrow \text { Ry }
\end{aligned}
$$

$$
\begin{aligned}
x & =\frac{8}{3}+2(-1) \\
& =213 \\
y & =2 \\
z & =0
\end{aligned}
$$

1) Two planes are parallel if and only if their normal vectors are parallel. That is $\overrightarrow{n_{1}}=k \overrightarrow{n_{2}}$ for some
2) Two planes that are not parallel intersect in a line. Note that the line of intersection is
perpendicular to both planes' normal vectors. That is parallel to the cross product of the two
normal.
3) The angle between the two planes is defined as the acute angle
between their normal vectors.
The live and plane intersect at

$$
\left(\frac{2}{3}, 2,0\right)
$$

Page $\mathbf{7}$ of $\mathbf{1 0}$

Example 7: Suppose we have two planes: $P_{1}: 3 x-6 y-2 z=15$ and $P_{2}: 2 x+y-2 z=5$.
a) Find a vector parallel to the line of intersection of the planes.

$$
\begin{aligned}
\vec{N}_{1} & =\langle 3,-6,-2\rangle \\
\vec{N}_{2} & =\langle 2,1,-2\rangle \\
\bar{N}_{1} \times \vec{j}_{2} & =\langle 14,+4,15\rangle \leftarrow \text { vo the line parallel of inter }
\end{aligned}
$$

b) to the lime of intersection
b) Find parametric equations for the intersection point and die. paction

$$
\begin{aligned}
& \text { We jed 1 point? }
\end{aligned}
$$

point $\left(0,-\frac{10}{7},-\frac{45}{14}\right)$ lies or both planes and on the line

$$
\text { live: } \vec{\sigma}=\left\langle 0,-\frac{10}{7} 2 \frac{-45}{14}\right\rangle+k\langle 14,4,15\rangle
$$

c) Find symmetric equations for the intersection line.

$$
\frac{x}{14}=\frac{y+10 / z}{4}=\frac{z+45 / 14}{15}
$$

d) Find the $=$ Angle between

$$
\begin{aligned}
& \dot{\beta}_{3}=\langle 3,-6,-2\rangle \quad \text { Normal vectors } \\
& \vec{N}_{2}=\langle 2,1,-2\rangle \text { recall } \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \\
& \Rightarrow \theta=\cos ^{-1} \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||亠 \bar{a}|} \\
& \Rightarrow \underset{\text { Page o of } 10}{\theta}=\cos ^{-1}\left(\frac{4}{7 \cdot 3}\right) \\
& =\cos ^{-1}\left(\frac{4}{21}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=14 t \\
& y=\frac{-10}{7}+4 t \\
& z=\frac{-45}{14}+15 t
\end{aligned}
$$

* Distance between Points, Planes and Lines

To find the distance D of the point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+d=0$, pick a point on the plane, call it $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ Then the vector connecting P_{0} to P_{1} can be found as
$\vec{b}=\overrightarrow{P_{0} P}=\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle$. We know the equation of the plane so we know its normal vector $\vec{n}=\langle a, b, c\rangle$. Using the given picture, we
 can think about distance D in two different ways:

1) Considering the right triangle, then $\cos \theta=\frac{D}{|\vec{b}|}$. We also know that $\boldsymbol{\theta}$ is the angle between \vec{n}

$$
\text { and } \vec{b} \text { so } \cos \theta=\frac{\vec{n} \cdot \vec{b}}{|\vec{n}||\vec{b}|} \text {. Putting them equal to each other, } \frac{D}{|\vec{b}|}=\frac{\vec{n} \cdot \vec{b}}{|\vec{n}||\vec{b}|} \text { and multiplying both }
$$

sides by $|\vec{b}|$ we get $D=\frac{\vec{n} \cdot \vec{b}}{|\vec{n}|}$ but the dot product can be positive or negative and distance is
always positive, hence we need to take the absolute value of the dot product: $D=\frac{|\vec{h} \cdot \vec{b}|}{|\vec{n}|}$
2) Considering the magnitude of the projection (component) of $\overrightarrow{P_{0} P}$ onto the normal, that is:

$$
D=\left|\operatorname{comp}_{n}-\vec{b}\right|=\frac{|\vec{n} \cdot \vec{b}|}{|\vec{n}|}
$$

They are equal! So now we can find the formula for distance:

knowing $d=-\left(a x_{0}+b y_{0}+c z_{0}\right)$, this formula can be written succinctly as: $D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$

Page 9 of 10

Example 8: Find the distance from $P_{1}(1,1,3)$ to the plane $3 x+2 y+6 z=0$.

$$
\begin{aligned}
D & =\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{|3(1)+2(1)+6(3)-6|}{\sqrt{9+4+36}} \\
& =\frac{17}{7} \text { distance from } P_{1} \text { to the plane. }
\end{aligned}
$$

To find the distance between two parallel planes, we find any points on one plane and calculate its distance to the other plane. We do the same to find the distance between a line and a plane (where the line and plane are parallel).
Example 9: Find the distance between the parallel planes $P_{1}: x+2 y+6 z=1$ and $P_{2}-x+2 y+6 z=10$.

$$
\begin{aligned}
& D=\frac{\left|k(1)+2(0)+6(0)-1_{0}\right|}{\sqrt{1+4+36}} \\
& \uparrow \\
& (1,0,0) \text { is a point ow } P \text {, } \\
& \text { fid distance from } \\
& =\frac{9}{\sqrt{41}} \text { distance between }(1,0,0) \text { to lowe } p_{2} \text {. } \\
& \text { the places. }
\end{aligned}
$$

To find the distance between two skew or parallel lines, view the lines as lying on two parallel planes and then proceed as above. (Note that we have to find the equation of a plane that includes one of the lines and is parallel to the other.)

Example 10: Find the distance between the skew lines $L_{1}: \frac{x}{1}=\frac{y-1}{-1}=\frac{z-2}{3} \quad, \quad L_{2}: \frac{x-2}{2}=\frac{y-3}{-2}=\frac{z}{7}$

$$
\begin{aligned}
& \begin{array}{l}
\vec{v}_{1}=\langle 1,-1,3\rangle \quad \text { Together these form a pave } \\
-(x-0)-(y-1)+0(z-2)
\end{array} \\
& \vec{v}_{2}=\langle 2,-2,7\rangle \\
& \Rightarrow-x-y=-1 \\
& \text { - lives parallel to clown } \\
& \vec{v}_{1} \times \vec{v}_{2}=\langle-1,-1,0\rangle \text { page } 10 \text { of } 10 \text { : } L_{1} \text { ar the place } \\
& \text { point from } L_{1}:(0,1,2) \text { Distance from the } \\
& \text { lave to } \mathrm{L}_{2} \\
& (2,3,0) \text { is on } L_{2} \\
& D=\frac{|-1(2)-1(3)+0(0)+1|}{\sqrt{1+1}}=\frac{4}{\sqrt{2}}
\end{aligned}
$$

