Assessment 5

Dusty Wilson
Math 163
\qquad
Name.

There still remain three studies suitable for

 free man. Arithmetic is one of them.No work $=$ no credit

$$
\begin{gathered}
\text { Plato } \\
427-347 \text { BC (Greek philosopher) }
\end{gathered}
$$

$$
\text { Warm-ups (1 pt each): } \quad \frac{\partial}{\partial x} x^{2}=\underline{2 x} \quad \frac{\partial}{\partial x} y^{2}=\underline{0} \quad \frac{\partial}{\partial x} \ln (x y)=\frac{v y}{x y}=\frac{1}{x}
$$

1.) (1 pt) Plato said that arithmetic is worthy of study along with two other topics. What do you think were the other topics worth studying? (I don't know, I'm just curious what you think).
Answer using complete English sentences.
Perhaps Plato referred to philoso phy and logic? (1) Arighmotsc (2) geomethy.

ANd (3) asmen 20 My .
2.) $(5 \mathrm{pts})$ Find the curvature of the helix $\vec{r}(t)=\langle 2 \cos t, 2 \sin t, 3 t\rangle$.

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\langle-2 \sin t, 2 \cos t, 3\rangle \\
& \vec{\sigma}^{\prime \prime}(t)=\langle-2 \cos t,-2 \sin t, 0\rangle
\end{aligned}
$$

$$
\vec{r}^{r} \times \vec{r}^{\prime \prime}=\langle 6 \sin t,-6 \cos x, 4\rangle
$$

$$
\text { And }\left|\nabla^{\prime}\right|=\sqrt{4 \sin ^{2} t+4 \cos ^{2} t+9}=\sqrt{33}
$$

$$
\text { A nd }\left|\pi r^{\prime \prime}\right|=\sqrt{36 \sin ^{2} t+36 \cos ^{2} t+16}=\sqrt{52}
$$

$$
\Rightarrow k=\frac{\sqrt{52}}{(\sqrt{13})^{3}}
$$

Page 1 of 3
3.) (5 pts) Find the tangent, normal, and binormal vectors of the curve $\vec{r}(t)=\left\langle\frac{t^{2}}{2}, 4-3 t, 1\right\rangle$ at the

$$
\begin{aligned}
& \text { point }(2,-2,1) . \\
& \overrightarrow{r^{\prime}}(t\rangle=\langle t,-3,0\rangle \\
& \Rightarrow\left|\vec{r}^{\prime}(t)\right|=\sqrt{t^{2}+9} \\
& \Rightarrow \vec{T}(t)=\left.\frac{1}{\sqrt{t^{2}+9}}\langle t,-3,0\rangle\right|_{t=2} \quad \geqslant=\frac{1}{\sqrt{13}}\langle 2,-3,0\rangle \\
& \text { And } \vec{T}^{\prime}(t)=-\frac{1}{2}\left(x^{2}+9\right)^{-3 / 2} \cdot x t\langle t,-3,0\rangle+\frac{1}{\sqrt{t^{2}+9}}\langle 1,0,0\rangle \\
&=\frac{-t}{\left(t^{2}+9\right\rangle^{3 / 2}}\langle t,-3,0\rangle+\left\langle\frac{1}{\sqrt{1^{3}+9}}, 0,0\right\rangle \\
& \Rightarrow \vec{T}(2\rangle=\frac{-2}{13^{3 / 2}}\langle 2,-3,0\rangle+\left\langle\frac{13}{\sqrt{13^{3}}}, 0,0\right\rangle \\
&=\left\langle\frac{9}{13^{3 / 2}}, \frac{6}{13^{3 / 2}}, 0\right\rangle \\
& \Rightarrow\left|\vec{\tau}^{\prime}(2)\right|=\sqrt{\frac{81}{13^{3}}+\frac{36}{13^{3}}+0}=\frac{\sqrt{117}}{13^{3 / 2}}
\end{aligned}
$$

Math 163 Page 2

$$
\begin{aligned}
& \Rightarrow \vec{j}(2)=\frac{\vec{T}^{\prime}(2)}{\left|\mathcal{T}^{\prime}(2)\right|}=\frac{1}{\sqrt{117}}\langle 9,6,0\rangle \\
& \text { ANd } \vec{B}(z)=\vec{T}(2) \times \vec{N}(2) \\
& \left|\begin{array}{ccc}
i & \bar{j} & \sqrt[r]{2} \\
2 & -3 & 0 \\
9 & 6 & 0
\end{array}\right| \quad=\frac{1}{\sqrt{13}}\langle 2,-3,0\rangle \times \frac{1}{\sqrt{117}}\langle 9,6,0\rangle \\
& =\langle 0,0,39\rangle=\langle 0,0,1\rangle
\end{aligned}
$$

4.) (5 pts) Find the tangential and normal components of the acceleration if $\vec{r}(t)=\left\langle\frac{t^{2}}{2}, 4-3 t, 1\right\rangle$ at the point $(2,-2,1)$.

$$
t=2
$$

Hint: You can check by using combining the results of (3.) and (4.) and verifying that $\vec{a}=a_{T} \vec{T}+a_{N} \stackrel{\rightharpoonup}{N}$.

$$
\begin{array}{ll}
\vec{r}^{\prime}(t)=\left.\langle t,-3,0\rangle\right|_{t=2} & \langle 2,-3,0\rangle \\
\vec{r}^{\prime \prime}(t)=\langle 1,0,0\rangle & \text { scratch. } \\
a_{T}=\frac{\vec{r}^{\prime} \cdot \vec{r}^{\prime \prime}}{\left|\vec{r}^{\prime}\right|}=\frac{2}{\sqrt{13}} & \left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{z} \\
2 & -3 & 0 \\
1 & 0 & 0
\end{array}\right| \\
a_{N}=\frac{\left|\vec{r}^{\prime} \times \vec{r}^{\prime \prime}\right|}{\left|\vec{r}^{\prime}\right|}=\frac{3}{\sqrt{13}} & \langle 0,0,3\rangle
\end{array}
$$

$$
\mid \vec{\sigma}+1 \quad \sqrt{13}
$$

check:

$$
\begin{aligned}
a_{1} \frac{\gamma}{T}+a_{,} \vec{N} & =\frac{2}{\sqrt{13}} \frac{1}{\sqrt{13}}\langle 2,-3,0\rangle+\frac{3}{\sqrt{13}} \frac{1}{\sqrt{117}}\langle 9,6,0\rangle \\
& \left.=\frac{2}{13}\langle 2,-3,0\rangle+\frac{3}{3} 91 \frac{1}{3} 9,6,0\right\rangle \\
& =41,0,0\rangle
\end{aligned}
$$

Page 3 of 3

