Assessment 3
Dusty Wilson
Math 163
No work = no credit
Noels Henrik Abel
Warm-ups (1 pt each): $\quad \vec{i} \times \vec{k}=\square$
$1802-1829$ (Norwegian mathematician)
1.) (1 pt) In the quote above, Abel talks about Gauss' writing style. According to Abel, how easy was it to understand Gauss' work? Answer using complete English sentences.

Gauss did nt show or explain h is work.
2.) (5 pts) If $\vec{a}=\vec{i}+3 \vec{j}-2 \vec{k}$ and $\vec{b}=-\vec{i}+5 \vec{k}$ find $\vec{a} \times \vec{b}$

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & p \\
1 & 3 & -2 \\
-1 & 0 & 5
\end{array}\right|=\langle 15,-3,3\rangle
$$

3.) (2 pts) Answer the following:
a.) Find a nonzero vector orthogonal to the plane through the points $P(1,0,1), Q(-2,1,4)$, and $R(6,2,7)$.

$$
\begin{aligned}
\overrightarrow{P Q}=\langle-2,1,4\rangle-\langle 1,0,1\rangle & =\langle-3,1,3\rangle \\
\overrightarrow{P Q}=\langle 16,2,7\rangle-\langle 1,0,1\rangle & =\langle 5,2,6\rangle \\
\Rightarrow \overrightarrow{P Q} \times \overrightarrow{P Q} & =\langle 0,-(-18-25\rangle,-11\rangle \\
& =\langle 0,33,11\rangle
\end{aligned}
$$

$$
\begin{gathered}
\text { Triangle } \\
\text { Area }
\end{gathered}=\frac{1}{2} \sqrt{33^{2}+11^{2}}
$$

$$
=\frac{11}{2} \sqrt{10}
$$

4.) (4 pts) Find the symmetric AND vector equations) for the line of intersection of the planes

 $6 x-3 y-3 z=0$ and $3 x+y+z=5$.Find 12 points on the line of intersection.

No solution.

$\therefore x \neq 0$.

$$
\Rightarrow \overrightarrow{P Q}_{Q}=(0,2,-2\rangle
$$

(2) Let $y=0 .\left\{\begin{array}{l}6 x-3 z=0 \\ 3 x+z=5\end{array} \Rightarrow-5 z=-10\right.$
(3) Lex z$=0\left\{\begin{array}{rl}6 x-3 y=0 \\ & \Rightarrow x=1 \\ 3 x+y=5\end{array} \Rightarrow y=2\right.$ Ans $x=1$
5.) (4 pts) Find the equation of the plane that passes through $(6,0,-3)$ and contains the line $x=3 t, y=2+5 t, z=6+4 t$.
reed I vectors on the plows.
(1) $\vec{m}=\langle-3,5,4\rangle$
(2) $\vec{v}=\langle 6,0,-3\rangle-\langle 3,2,6\rangle=\langle 3,-2,-9\rangle$
$\Rightarrow \vec{u} \times \vec{v}=\left|\begin{array}{ccc}\vec{i} & \overline{3} & \vec{k} \\ -3 & 5 & 4 \\ 3 & -2 & -9\end{array}\right|=\langle-37,-15,-9\rangle \begin{aligned} & \text { normal } \\ & \text { venter }\end{aligned}$
place: $-37(x-6)-15(y-0)-9(z+3)=0$.

