12.6: Cylinders and Quadric Surfaces

Monday, October 3, 2022 1

Cylinders and Quadric Surfaces

We have already looked at two special types of surfaces: planes and spheres. Here we investigate two other types of surfaces: cylinders and quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of intersection of the surface with the planes parallel to the coordinate planes. These curves are called **traces** (or cross-sections) of the surface.

A cylinder is a surface that consists of all lines that are parallel to a given line a pass through a given plane curve.

Notice that in each equation a variable is missing. This is typical of a surface whose rulings are parallel to one of the coordinate axes. If one of the variables is missing from the equation of a surface, then the surface is a cylinder.

NOTE: When you are dealing with surfaces, it is important to recognize that an equation like $x^2 + y^2 = 1$ represents a cylinder and not a circle. The trace of the cylinder $x^2 + y^2 = 1$ in the xy-plane is the circle with the equations $x^2 + y^2 = 1, z = 0$.

A quadric surface is the graph of a second-degree equation in three variables x, y, and z. The most general such equation is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$$

where A, B, C, \ldots, J are constants, but by translation and rotation it can be brought into one of the two standard forms

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 or $Ax^2 + By^2 + Iz = 0$

Quadric surfaces are the counterparts in three dimensions of the conic sections in the plane (parabola, ellipse, and hyperbola).

	Surface	Equation	Surface	Equation	
Mani Allander Property Control of the Property Control	Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes $x = k$ and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.	13,87
13,84	Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.	13,85
13,86 Saddle	Hyperbolic Paraboloid	$\frac{r}{c} = \frac{x^2}{a^2} = \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets	$\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.	13,88

 $\underline{http://demonstrations.wolfram.com/PlaneSectionsOfSurfaces/}$

NOTE: For Hyperboloid you can think of $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = \pm 1$. If we have +1 then we have hyperboloid

of one sheet. Otherwise it is a hyperboloid of two sheets. Since the coefficient of z is negative the hyperboloids open toward z-axis.

Page 3 of 3