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Cylinders and Quadric Surfaces

We have already looked at two special types of surfaces: planes and spheres. Here we investigate two
other types of surfaces: cylinders and quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of intersection of the surface
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with the planes parallel to the coordinate plancs. These curves are called traces {or cross-sections) of the

surface. a .Jd
A cylinder is a surface that consists of all lines that are parallel to a given lin@ass through a given
plane curve.
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one of the coordinate axes. If one of the variables is missing from the equation of a surface, then the
surface is a cylinder.

NOTE: When you are dealing with surfaces, it is important to recognize that an equation like x* + y* =1
represents a cylinder and not a circle. The trace of the cylinder x* +y* =1 in the xy-plane is the circle

with the equations x” + y> =1,z=0.

Example 1: Graph » = sin(z}
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A quadric surface is the graph of a second-degree equation in three variables x, y, and z.
The most general such equation is
AP+ B+ C2+ Day + Eyz+ Faz+ Gx+ Hy+ Iz +J =10

where A, B, C, . .., J are constants, but by translation and rotation it can be brought into cne
of the two standard forins

Ax®*+ Byt + CFf+i=0  or Ax2+By2+Iz§=

Quadric surfaces are the counterparts in three dimensions of the conic sections in the plane (parabola,
ellipse, and hyperbola).
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All traces are ellipses, Horizontal traces are ellipses.
Ha = b = c, the ellipsoid is Vertical traces in the planes
a sphere. x=rFkandy = kare
hyperbolas if & # 0 but are
pairs of lines if k = 0.
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Etliptic Paraboloid = a S %
Horizontal traces are ellipses. Horizontal traces are ellipses.
Vertical traces are parabolas, Vertical traces are hyperbolas,
. The variable raised to the The axis of symmetry
V73, g Y first power indicates the axis corresponds to the variable
of the paraboloid. whose coefficient is negative.
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Hyperbaolic Paraboloid -f = —E; «-~~l’-’-,- Hyperboloid of Two Sheets
Horizontal traces are Horizontal traces in z = k are
hyperbolas. ellipsesif k > cor k < —c.
Vertical traces are parabelas. Vertical traces are h
The case where ¢ < 0 is
illustrated.

http://demonstrations.wolfram.com/PlaneSectionsOfSurfaces/
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of one sheet. Otherwise it is a hyperboloid of two sheets. Since the coefficient of z is negative the
hyperboloids open toward z-axis.
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Example 2: Identify each quadric surface and graph the cone, and elliptic paraboloid if any!
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Math is crazy: Two spheres can be formed from
one! Yup, that’s right.

The Banach-Tarski paradox states: Given a solid
ball in three-dimensional space, there exists a
decomposition of the ball into a finite number of
disjoint subsets, which can then be put back
together in a different way to yield two identical
copies of the original ball. Indeed, the reassembly
process involves only moving the pieces around
and rotating them without changing their shape
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