12.6: Cylinders and Quadric Surfaces

Monday, October 3, 2022 12:57 PM

Cylinders and Quadric Surfaces

We have already looked at two special types of surfaces: planes and spheres. Here we investigate two other types of surfaces: cylinders and quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of intersection of the surface with the planes parallel to the coordinate planes. These curves are called traces (or cross-sections) of the surface.

ard

A cylinder is a surface that consists of all lines that are parallel to a given lin a ass through a given plane curve.

The following are examples of cylinders:

manipulate
13.76

FIGURE 1
The surface $z=x^{2}$ is a parabolic cylinder.

No y

Notice that in each equation a variable is missing. This is typical of a surface whose rulings are parallel to one of the coordinate axes. If one of the variables is missing from the equation of a surface, then the surface is a cylinder.

NOTE: When you are dealing with surfaces, it is important to recognize that an equation like $x^{2}+y^{2}=1$ represents a cylinder and not a circle. The trace of the cylinder $x^{2}+y^{2}=1$ in the $x y$-plane is the circle with the equations $x^{2}+y^{2}=1, z=0$.

Example 1: Graph $x=\sin (z)$

A quadric surface is the graph of a second-degree equation in three variables x, y, and z. The most general such equation is

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+G x+B y+I z+J=0
$$

where A, B, C, \ldots, J are constants, but by translation and rotation it can be brought into one of the two standard forms

$$
A x^{2}+B y^{2}+C z^{2}+J=0 \quad \text { or } \quad A x^{2}+B y^{2}+I z=0
$$

Quadric surfaces are the counterparts in three dimensions of the conic sections in the plane (parabola, ellipse, and hyperbola).

13,87
http://demonstrations.wolfram.com/PlaneSectionsOfSurfaces/

NOTE: For Hyperboloid you can think of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}= \pm 1$. If we have +1 then we have hyperboloid of one sheet. Otherwise it is a hyperboloid of two sheets. Since the coefficient of z is negative the hyperboloids open toward z-axis.

Example 2: Identify each quadric surface and graph the cone, and elliptic paraboloid if any!

Page 3 of $\mathbf{3}$

