12.3: Dot Product

Wednesday, September 28, 2022
3:50 PM

The Dot Product and its Use!

* Dot Product

Unlike numbers, there are two ways to multiply vectors. We learn about dot product here and cross product in the next section.

1 Definition If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the dot product of \mathbf{a} and b is the number $a \cdot b$ given by

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

NOTE: The result of a dot product of two vectors is a scalar (member)! This is important.
Example 1: Find the following.
a)

The dot product obeys many of the laws that hold for ordinary products of real numbers. These are stated in the following theorem.

3 Theorem If θ is the angle between the vectors \mathbf{a} and \mathbf{b}, then

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

13.44

Note that the last Theorem gives you:

6 Corollary If θ is the angle between the nonzero vectors \mathbf{a} and \mathbf{b}, then

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

Example 2: Find the angle between $\vec{a}=\vec{i}-2 \vec{j}-2 \vec{k}$ and $\vec{b}=6 \vec{i}+3 \vec{j}+2 \vec{k}$.

$$
\begin{aligned}
& \left.\begin{array}{l}
|\vec{a}|=\sqrt{1+4+4}=3 \\
|\vec{b}|=\sqrt{36+9+4}=7
\end{array}\right\}\left\{\begin{array}{c}
\cos \theta=\frac{-4}{3(7)} \\
\Rightarrow \theta=\cos ^{-1}\left(-\frac{4}{21}\right) \\
\\
\approx 1.76 \mathrm{rad} .
\end{array}\right.
\end{aligned}
$$

Teacher story: Remember the application about the roof ... well one of the authors learned this the hard way! He was sheeting a new roof (putting new wood down under the roofing material) and needed to cut some angled pieces. Being a "smart" mathematician, he used his trig skills, it was close, but not quite right! Out in the real world, he couldn't figure out the angle!

So he did what most people would do ... he used a lot of extra nails and just covered it up.
Later, he told an engineering friend about this who said, "Why didn't you use vectors and the dot product to find the angle?"

Lesson learned.

Example 3：Suppose one plane of a roof has a 6：12 pitch and it is intersected by a second plane that has a pitch of 4：12．Find the angle between the valley and a line going straight up the $6: 12$ roof plane．
peed 2 vectors．

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =144+0+36=180 \\
|\vec{u}| & =\sqrt{144+0+36} \approx 13.42 \\
|\vec{v}| & =\sqrt{144+324+36} \approx 22.45 \\
\Rightarrow \theta & \approx \cos ^{-1}\left(\frac{180}{1342.22 .45}\right) \\
& =53.31^{\circ}
\end{aligned}
$$

（1）straight up roof

$$
\vec{n}=\langle 12,0,6\rangle
$$

（2）up the valley

$$
\begin{aligned}
& \text { (2) up the valley } \begin{aligned}
& \vec{v}=\langle 12,18,6\rangle \Rightarrow \theta \approx \cos ^{-1}\left(\frac{180}{1342.22 .45}\right) \\
&=53.310
\end{aligned} \\
& \begin{aligned}
\frac{4}{12}=\frac{6}{y}
\end{aligned}
\end{aligned}
$$

Two nonzero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal if the angle between them is $\theta=\frac{\pi}{2}$ ．（Note：This is 90° ，however we focus on radians as that is the prevalent measure used throughout mathematics）．Now we can calculate the dot product of the perpendicular vectors：

$$
\vec{a} \cdot \vec{b}=|\vec{a}|| | \underbrace{\cos \left(\frac{\pi}{2}\right)}_{0}=0
$$

and conversely if $\vec{a} \cdot \vec{b}=0$ ，then $\cos \theta=0$ ，so $\theta=\frac{\pi}{2}$ ．The zero vector $\overrightarrow{0}$ is considered to be perpendicular to all vectors．Therefore we have the following method for determining whether two vectors are orthogonal．

7 Two vectors a and b are orthogonal if and only if $a \cdot b=0$ ．

Example 4：Show that $\langle 3,-2,1\rangle$ and $\langle 0,2,4)$ are orthogonal．
要, 最

$$
+(-4)+4=0
$$

Since the dot product is zero，the vectors are $工$ ．

Page 3 of 7

Section 12.3: The Dot Product

 Math 163: Calculus IIIBecause $\cos \theta>0$ if $0 \leqslant \theta<\pi / 2$ and $\cos \theta<0$ if $\pi / 2<\theta \leqslant \pi$, we see that $\mathbf{a} \cdot \mathbf{b}$ is positive for $\theta<\pi / 2$ and negative for $\theta>\pi / 2$. We can think of $\mathbf{a} \cdot \mathbf{b}$ as measuring the extent to which \mathbf{a} and \mathbf{b} point in the same direction. The dot product $\mathbf{a} \cdot \mathbf{b}$ is positive if \mathbf{a} and \mathbf{b} point in the same general direction, 0 if they are perpendicular, and negative if they point in generally opposite directions (see Figure 2). In the extreme case where \mathbf{a} and \mathbf{b} point in exactly the same direction, we have $\theta=0$, so $\cos \theta=1$ and

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}|
$$

If \mathbf{a} and \mathbf{b} point in exactly opposite directions, then $\theta=\pi$ and so $\cos \theta=-1$ and
 $\mathbf{a} \cdot \mathbf{b}=-|\mathbf{a}||\mathbf{b}|$.

* Direction Angles

The direction angles of a nonzero vector $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ are the angles in the interval $[0, \pi]$, that the vector makes with the positive x-, y - and z-axis. The cosines of these angles are called the direction cosines.

NOTE: This is a topic may need for homework, but direction angles are not used heavily elsewhere.
Looking at the given figure:

$$
\cos \alpha=\frac{\vec{a} \cdot \vec{i}}{|\vec{a}||\vec{i}|}=\frac{\left.\left.\left\langle a_{1}\right\rangle, a_{2}, a_{3}\right\rangle \cdot(1,0,0\rangle\right)}{|\vec{a}|}=\frac{a_{1}}{|\vec{a}|} \longleftarrow
$$

$$
\cos \beta=\frac{\vec{a} \cdot \vec{j}}{|\vec{a}||\vec{j}|}=\frac{\left\langle a_{1}\left(a_{2}\right) a_{3}\right\rangle \cdot\langle(0,1,0)}{|\vec{a}|}=\frac{a_{2}}{|\vec{a}|} \leftharpoonup
$$

$$
\cos \gamma=\frac{\vec{a} \cdot \vec{k}}{|\vec{a}||\vec{k}|}=\frac{\left\langle a_{1}, a_{2} \cdot a_{3}\right\rangle \cdot(0,0,1)}{|\vec{a}|}=\frac{a_{3}}{|\vec{a}|} \Longleftarrow
$$

This gives us:
So:

$$
\underline{\vec{a}}=\underline{\left\langle a_{1}, a_{2}, a_{3}\right\rangle}=\hat{|\vec{a}| \cos \langle,| \vec{a}|\cos A| \vec{a}|\operatorname{os} \gamma\rangle}
$$

Which can be written as:

$$
\vec{a}=|\vec{a}|\langle\cos \alpha, \cos \beta, \cos \gamma\rangle
$$

Therefore: $\begin{array}{ll}\begin{array}{ll}\text { UNit } \\ \text { vector }\end{array} & \frac{\vec{a}}{|\vec{a}|}=\langle\cos \alpha, \cos \beta, \cos \gamma\rangle\end{array}$

$$
a_{1}=|\vec{a}| \cos \alpha, \quad a_{2}=|\vec{a}| \cos \beta, a_{3}=|\vec{a}| \cos \gamma
$$

Also, we can see : $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\frac{a_{1}^{2}}{|\vec{a}|^{2}}+\frac{a_{2}^{2}}{|\vec{a}|^{2}}+\frac{a_{3}^{2}}{|\vec{a}|^{2}}=\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{|\vec{a}|^{2}}=\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{\left(\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}\right)^{2}}=1$

Page 4 of 7

Example 5: Find the direction angles of the vector $\vec{a}=2 \vec{i}+\vec{j}+4 \vec{k}$ (Round to the nearest whole angle).

$$
\begin{aligned}
& \text { vii }=\frac{\vec{a}}{|\vec{a}|}=\frac{1}{\sqrt{21}}\langle 2,1,4\rangle=(\cos \alpha, \cos \beta, \cos \gamma) \\
& \left.\alpha=\cos ^{-1}\left(\frac{2}{\sqrt{21}}\right) \approx 1.12 \mathrm{rad} . \quad \gamma=\cos ^{-1}\left(\frac{4}{\sqrt{21}}\right) \approx 0.5\right) \\
& \beta=\cos ^{-1}\left(\frac{1}{\sqrt{21}}\right) \approx 1.35 \mathrm{rad} .
\end{aligned}
$$

* Projections

Think about vector $\vec{v}=\langle a, b\rangle$ in 2D.
We say that a is the horizontal component of vector \vec{v}. We can also say it is the component of vector \vec{v} in the direction of x-axis (onto \vec{i} or any vector in that direction). We can write this as: $a=\operatorname{comp} \cdot \vec{v}$. scalar Also we call $a \vec{i}$ the shadow of \vec{v} onto x-axis. In correct mathematical terms, $a \vec{i}$ is the projection of \vec{v} onto \vec{i} and can be written as: $\overrightarrow{a i}=\operatorname{proj}_{i} \vec{v}$

vector

We can define component or projection of a vector onto any other vector or in any other direction. The vector projection of \vec{b} onto \vec{a} is denoted by $\operatorname{proj}_{\vec{a}} \vec{b}$.

The two cases are shown in the figure.

The scalar projection of \vec{b} onto \vec{a} (also called the component of \vec{b} along \vec{a}) is denoted by comp $\vec{a}_{\vec{b}} \vec{b}$. It is defined to be the signed magnitude of the vector projection $(|\vec{b}| \cos \theta)$.

Page 5 of 7

$$
\begin{array}{|ll}
\hline \text { Scalar projection of tonto } a: & \operatorname{comp}_{a} b=\frac{a \cdot b}{|a|} \quad \text { SCaLar } \\
\text { Vector projection of b onto a: } & \operatorname{proj}_{a} \mathrm{~b}=\left(\frac{a \cdot b}{|a|}\right) \frac{a}{|a|}=\frac{a \cdot b}{|a|^{2}} \text { a } \quad \text { va }
\end{array}
$$

Notice that the vector projection is the scalar projection multiplied by the unit vector in the direction of vector \vec{a}

Example 6: Find the scalar and vector projection of $\vec{a}=6 \vec{i}+3 \vec{j}+2 \vec{k}$ onto $\vec{b}=\vec{i}-2 \vec{j}-2 \vec{k}$.

$$
\begin{aligned}
& \operatorname{comp}_{b} \vec{a}=\frac{\vec{a} \cdot e_{6}}{|\vec{a}|}=\frac{6-6-4}{\sqrt{36+4+4}}=\frac{-4}{7} \text { scalar } \\
& \begin{array}{c}
\operatorname{proj} \vec{a}=\frac{-4}{7}\left(\begin{array}{c}
\text { vt } \\
\text { Nah } / 1 \\
\text { ito } \\
\frac{b}{b}
\end{array}\right)=-\frac{4}{7}\left\langle\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right\rangle \\
\frac{1}{\sqrt{9}}\langle 1,-2,-2\rangle \quad \text { vector }
\end{array}
\end{aligned}
$$

* Work

The work done by a constant force \vec{F} that moves an object from P to Q (creating displacement vector \vec{D}) can be calculated by: work = force s distance

$$
W=\vec{F} \cdot \vec{D}
$$

NOTE: Force and work are major themes in the last part of Calculus IV.
Example 7: If $|\vec{F}|=40 N,|\vec{D}|=3 m$ and $\theta=60^{\circ}$, find the work!

$$
\begin{aligned}
\text { work } & =\vec{F} \cdot \vec{D} \\
& =|\vec{F} \| \vec{D}| \cos \theta \\
& =40(3) \cdot \underbrace{\cos 60^{\circ}}_{\frac{1}{2}} \\
& =60 \mathrm{~N} \cdot \mathrm{~m}^{\circ}
\end{aligned}
$$

Example 8: How much work is done if a man pulls a wagon from point $P(-1,5)$ to point $Q(8,2)$ by applying 20 lbs . on the handle that makes a 60° angle with the horizon? (Displacement is in feet)

$$
\begin{aligned}
& \overrightarrow{F Q}=\langle 9,-3\rangle \\
& \begin{aligned}
& \text { ard } \\
&|\overrightarrow{P Q}|=\sqrt{81+9}=\sqrt{90} \\
&|\vec{F}|=201 b s \quad \text { worm }=\vec{F} \cdot \vec{D}=20 \cdot \sqrt{90} \cos 60^{\circ} \\
&=10 \sqrt{90} \mathrm{ft} \cdot 165
\end{aligned} \\
& \text { Page of } 7 \quad \text { of work }
\end{aligned}
$$

