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4.7: Change of Basis
Math 220: Linear Algebra

We are now going to look at converting a vector x in one coordinate system into
another coordinate system — same vector, different coordinate representation.
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By observation, find
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:[ ?} and [x]

Consider the following vector spaces spanned by {bpbz} and {cvcz} respectively.
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Ex 1: Consider two bases B = {b1,ba} and C' = {e1,c2} for a vector space V, such that

b; =4c; 4+ ¢ and bs = —6c; +¢Ca

3
Suppose X = 3by + by (thatis, [X]p = [1] ), find [X]e.
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4.7: Change of Basis

Theorem 15 _
Let B = {b1,...,ba} and C = {c1,...,ca} be bases of a vector space V. Then

there is a unique n x n matrix P such that
C—B

X}~ = X 4)
e = P % (4)
The columns of CPB are the C-coordinate vectors of the vectors in the basis B. That is,
+—
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C— coord Vector, se Hhe wiy
P isthe chawge o % coordivares mommix from B to ¢ of P
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WhyarethecolumnsofoB linearly independent? The colvmue farm a
basis for the vedor space
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So P is ivertible
C—B
So equation (4) above can be re-written as { 2 \ xlo = [X]g

Since Cfg is the matrix that converts B-coordinates to C-coordinates, what should
P\ do? T shoud covverst $rom C- cedplivaies
(oF .
((‘“‘ﬂ\ yo B- coondio ates,
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4.7: Change of Basis

. (P)Y'=P
CeRB Be O

Change of Basis in R"
If B= {by,...,b,} and € is the standard basis {e,,...,e,} inR", then

[bl} . = by, and likewise for the other vectors in B. In this case, PB is the
> E'é— 5

same as the change-of-coordinates matrix Pg introduced in Section 4.4,

namely,

Pg=Jb; by --- by

However, to change coordinates between two non-standard bases in R”, we will

need to use Theorem 'S and find coordinate vectors of the =l basis
relative to the ~4-w bass
Ex 2:
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Let I = R 2= 0 ;€1 = _1 €2 = _9 . and consider

the bases for R* givenby B = {by,bs} and C' = {c;,c2}. Findthe
change-of-coordinates matrix from B to C.
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4.7: Change of Basis
The wmeihed ' T
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the bases for R? given by B = {by,bs} and C = {e;1,¢c2 }.
a. Find the change-of-coordinates matrix from C to B.

b. Find the change-of-coordinates matrix from B to C.
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Practice Problems
1. Let F = {f1,f2} and G = {g1,82} be bases for a vector space V, and let P be

a matrix whose columns are [fi] and [f2]o. Which of the following equations is

satisfied by P forall vin V? ‘ !
P | Bg e ]
\ \

i) [v]p = Plvlg

¥ (i) [Vlg = Plv]lg This s @;ff
2. Let Band C be as in Example 1. Use the resulis of that example to find the change-
of-coordinates matrix from C to B. chack:
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