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Line Integrals
Objective:
I Scalar line integrals in two and three dimensions

2. Line integrals across vector fields (worlc)
3. Circulation and flux

l. Scalar line integrals in two and three dimensions

| 7.2: Line Int ,_l.ll
Math 264

In previous chapters we considered three kinds of integrals in rectangular coordinates: single integrals
over intervals, double integrals over two-dimensional regions, and triple integrals over three-dimensional

regions. In this section we shall discuss line integrals, whiEJ\ are integrals over curves in two or three-
A (§ co

. . - (Scovefan
dimensional space. Integrals over curves were lnventecfm the early |9t century to solve problems
involving a variety of things such as fluid flow, force, electricity, and magnetism. The application that is
easiest to visualize is the surface area of the curtain “under" a surface and along a curve C on the xy-plane.

In order to unpack this surface area, we will need to parameterize the curve C which requires that we
distinguish between the parameter t (not visible on the graph) and the arclength s (visible).
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With this in mind, we can deﬁn; and calculate the scalar line integral in the plane which represents that

area of the curtain “under” f he xy-plane along the curve C.

Definition: Scalar Line Integral in the Plane

Suppose the scalar-valued function fis defined on a region containing the smooth curve C given

by 1"(!)=(_r(t),_1‘(r)) for a<r<h.

The line integral of f over Cis J‘r / (.t‘(f),_]'(f))tf.\’ = 1i|1? Z f(.\'(t"),_r(rz ))A.s" provided this
10 4=

limit exists over all partitions of [a,b]. When the limit exists, f is said to be integrable on C.

Page 1 of 12,



17.2: Line Integrals
Mach 264

Lb)

n
aren of curlun )'f g, Yilpo Ssh
L)

cheek ov+ mMapipolate VRAF

V5 a
ddﬂh'y voralde

v i

»

The key to applying this definition is finding a formula for ds . To do this, recall that if a space curve is o
parameterized by /* ( ) then the cumulative arclength of C over the anterval a, l is S I l ” ‘d”

which can be differentiated to reveal that .5" ! = IF' t | or using Leibniz notation ds =|F ( )ltft

The punchline: To evaluate a scalar line integral “under” f and along the path C parameterized by F(I)

with a <t <b , we use the formulas:

)

= [ £ () r () (0]
[ " (x(0) (1) \[(.\-'(,))3 “(3'(0)) dr

inR’ :I fds

and

inR’ I [ds =Lh ./'(.1'(!)._1'(1).:(1)) [F'(r)la’r
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Exl: Find the area of the surface extending upward from the circle x* + v’ =1 to the parabolic cylinder
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'jmpor'tant notes:

(&

% e The procedure for evaluating the line integral j fds (Formulas are given in two dimensions. The
-

three dimensional versions are analogous).

o Find a parametric description of C in the form 7 () = <.r(l),_1'(l)) ona<t<h

o Compute ‘r"[!)l:\/(x"(r)):+(}"(!)): Wil o pead to F1Rd ds.

o Make substitutions for x and y in the integrand and evaluate an ordinary integral:
I_/’d.\' =J‘ _f(.\‘(!),_l‘(!))]ﬁ'(r)ld!
)

¢ The value of the line integral doesn't depend on the parametrization of the curve, provided that
the curve is traversed exactly once as ! increases from « to b.

e Ordinary single integrals are a special case of the line integral where C is the line segment joining

(H.O) and (b.O) with parametric equations v=x y=0 a<x<h. In this case the line

L
integral formula simplifies 2 L__/'(.r._\')ds . _r £ (x,0)dx

e If C isapiecewise- ine i ece
a piecewise-smooth curve, then we find the line integral for each piece {\//,4—\\\
and add them to get the line integral over C'. J /\/‘1/
. . - - i ‘7
6 L_ flx,y)ds = |r flo,yds + | flx,ylds + - + ‘ flx,v) ds =Lk
B WOy R <O -_

e Any physical interpretation of a line integral depends on the physical
interpretation of the function /. For example, if [ represents the density of a thin wire shaped

like C. then the total mass is the line integral of / over C.

% e When setting up a line integral, the most difficult step is parameterizing the curve C. Two common
parameterizations are:

o A line segment that starts with :T, and ends in E is given by:
Ft)=(1-1)r+1r 0<t<I
o Acircle (0<1< 27) orasemicircle (0<e< 7) centered at (x,5)=(a.b) with radius

ris given by x=a+rcost and y=b+ rsint for counter clockwise movement.
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Il. Line integrals across vector fields (work)
This is what we have learned so far about work:

(review): Work Done by a Constant Force:

* If an object is moved a distance ¢ in the direction of an applied constant force /-, then the

work 11" done by the force is defined as ' = [d/

» The work done by a constant force F that moves an object from P to Q) (creating

porice Pt the work dplﬂ
depands op the targestial
o mporesti of vhe GCowa

displacement vector D) can be calculated by I = F-D ae®

(review): Work Done by a Variable Force:

sukbiect o
* If an object moves along a straight line from « to b, k¥ a continuously varying force (not

constant) f(.\‘) . we define the work as I} = r./'(.\')d.\‘

(new): Work required to move a particle through a vector field:

e If an object moves along a smooth curve (', through a continuous force field

F = S (x, _l’)?+ g (1\); defined on R?, then the work done is obtained by integrating the
tangential component of force along the curve so IV = L.F'-?'ds where T(x v) is the unit

tangent vector at the point (,\‘,_1') on C.
At first glance this looks complicated, but work is actually straight forward to implement. Recall

that if the curve is given by the vector equation ;(t) = _x‘(l);+_1f(!)}', then f(r) = I*—

This means that we calculate work using the formula: = WA, ST e
ne — F'(t —
W=_‘-.F-Tds=.[_F- t ( ) lf'(l)’d! =J_F-a’f tha, -!-augam‘ql
STELE g L
/ COMpOPeIH o

1 +L'Q- ;\QNE_

g v /—\
r /
/
~ o |/

Or simply work = J-(_ F-dr

The definition in three dimensions is analogous.
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Ex2: Find the work done by the force field ] = _\"_l‘l:+ (_\' —-_\')[.' on a par[icle that moves along the

parabola v =x’ from (-2.4) to (I.1).
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- One common wa i g e
ffﬁ y to write the work formula is,reference x, and y rather than r. To do this, recall that

() =/ , : Ir
r(t)—(.\ (I)\(l)) This means that E?"w:f'(t):(.\"(I).y'({)) and the work formula is:

work =L_ﬁ.dr - L.(_f‘(.\'.,\‘)-.k’(.\'.,\'))-<,\-'(r),‘1"(!))dr =L__/’(_‘~._v) dx g(xy) ‘_IL or simply

)4 I—__‘ Vi) V(1)

work = L_ F-dr= L_f dv+ gdy
nc.a]fm'f‘e-l' +e
Ex3: Evaluate the work = J- 2.\'_1'd.\'+(.r‘ +_1‘2)af_v movig\:g a particle along the circular arc C.

¢

porcet F = {axy, Xy
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In general, the value of a line integral (and work) depends on three things:

e The location of the endpoints of the curve.

e The length and shape of the path (later will we learn conditions that cause the integral to be
independent of path)

e e The direction or orientation of the curve.

Page 7 of 1

S
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It = C denotes the cunve consisting of the same points as € but with the opposite ori- o
entation (from initial point & 1o terminal point A in Figure 8). then we have o 3 ?
' ' ' 2~ |
| ' flevydy — ~ | Sy dy [ : fie v dy = J' flwv)dy 5 l
N .l 8 \
e e ——
But it we integrate with respect to arc length, the value ol the linc intcgral does not ¥ .

change when we reverse the onientation of the cune: K

|. Sl y)ds = i Jlv v) ds N
« C ol
FIGURE 8

y = . g & ok i WE reverse
This is because A is always positive, whereas Ay, and Ay change sign w hen we
the orientation of €.

2 ; : ise direction around
Ex4: Evaluate the work = I x“ydx+xdy for a particle to move ina counterclockwise direct

C
the triangular path given.
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Ex5: Evaluate J.(.\'J' +2 ) ds where (' is the portion of the helix given by the parametric equations:
(
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172 Exé: Find the mass of a thin wire if the density function is p(.x, v,z) =kz with k>0 and shaped in the

form of a helix with parametric equations v =cos! y=sin/ z=2 0s/=7.
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Ex7: Evaluate J-

(

vzdv+azdy+ 3y dz where C is represented by ;'-(/):“"4.1-'_}“‘,(- 0<r<l.
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lll. Circulation and flux

A number of the forthcoming theorems/results rely on the idea of a closed path (or closed curve). A
closed curve is one whose initial and terminal points are the same.

In this case, we give the work to move an object around a closed path a new name: circulation.

Definition: Circulation

Let 7 be a continuous vector field on a region D of R* and let C be a closed smooth oriented

curve in D. The circulation of Fis circulation = work =<j) F-Tds where (13 represents the
A
line integral around a closed path.

Ex8: Let C be the unit circle with counterclockwise orientation. Find the circulation on C for the radial

flow field F=(x, ) and the rotation flow field /" ={~v,x)

On the umt carcle, F - «x, y115 orthogonal to
C and has zero curculabon on C.
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On the unit cucle, F = (- v, x) 15 tangent ta C
and has positive circulation on C.
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While circulation is a measure of the tangential component of field along a path, flux is a measure of the

normal component of the field along a path.

In two dimensions, this will be [lux = I F -1i ds where

¢

i=Txk (l\T being the unit vector in the z direction).

While we may not yet be able to calculate the flux, we already know enough to compare the flux and

circulation in radial and rotational flows.

Al vecors

MO rmal
- A \
\\ S \
“‘\\

.

( ..A‘\ :
- %
W\
L
1

On the unit arcle, F - (x, )7 is erthogonal to
C and has positive outward flux on C.

Fun-0
e —
0
F points outward on &

and gives a posiuve
contnbution to flux

Al vecgons

On the unit circle, F - (- y, x) is tangent to C
and has zero outward flux on C.
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Ex9: Derive the (computationally nice) formula for flux in two dimensions where /= <_/'.g>

represents a continuous vector field traversed by path C: (1) = (r(!) 1'(!)) for a<t<b.

)

We warnt to wlwlate -F{ux:&

P ds  when ~
> j o‘,__,: < aa‘J ‘bf"’
N = T)‘-E r"“'“‘w’
(‘(ﬂ(j"q}o
Tv Mo ke, +Hhe C(\DSS-PNO‘UC-J" work i w ) e 7:(175 =<')<(:E1,(3U'.)‘O7
- | _ | )
5 M) = X w) RS I
= ﬁ‘—' :fa:xt.
l |
= ¥ Lﬂ,?lﬂ,Oﬁ " <O'D,L_\I,7
‘.Fl(.t')‘ y XYY, +ha+
- c:&:-z.’:_.w}} P""old
- | . y 2 is te hapd,
- = - <Lﬁ 1"')( 107
I ™|
AHso

ds = (V') d&
,'pui-h'pg Huse %—oge.{»hep, we .LIQUQ
Hox = S .7 ds

C
= SG<F|%W'<%l,-X'>d’t

= Llld(j _.%dx
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