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6.4 Tripe Integrals
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Triple Integrals
Objective:

i. Definition of triple integrals
2. Triple integrals over a general solid
3. Applications of triple integrals

I Deﬁnitibn of Triple Integrals

o . . . . cheek our
Just as we defined single integrals for functions of one variable over an axis and double integrals for mewi polatre

functions of two variables over a closed region on xy-plane, we can define triple integrals for functions 4 -
of three variables over a closed three-dimensional solid.

To define triple-integrals, we'll first divide the solid into small boxes with sides Gty o)
. Y1 2
parallel to the coordinate planes. Each of these small boxes have volume: ©

AV = AxAyAz. As we did for two and three variable functions we multiply 2

AV by the value of the function, for a sample point, in each box. Then
adding them all together we form the triple Riemann sum:
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Making the size of the boxes smaller and smaller (by allowing the number of
boxes to grow infinitely larger) we will have:

pition The triple integral of [ over the box B is
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This is solved analogously to double integrals where dV = dxdy dz parallels the formula d4 =dxdy . If

the solid B is a box, the integrals are much easier:
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i Fubinis Theorem for Triple Intagrals I £ is contingous on the rectangu- |
larbox B = [a, b} X [(' dj » [r, *fj thcn E
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Otherwise we have to be very careful in determining the limits of integration. In this course we will
only consider continues functions over simple smooth solids.
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Exl: E

35§ 2-2 av

valuate I” 7 ~% dv over the rectangular box 2<x< 3 0<y<2 0<z<|
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— check ouf

)

-, Mprpu(a’fe.
[‘L:& - & 16,91

' Determining the limits of integration

Draw a picture of the 3D region over which you are integrating.

Inner limits:
o On the 3D model, sketch an arrow parallel to the axis of the inner variable. The arrow

enters the model at the lower limit and exits at the upper limit.

Draw a second 2D picture. This sketch is of the projection of the 3D object onto the plane
formed by the outer two variables.

Middle limits:
o Sketch three arrows parallel to the axis of the middle variable on the 2D picture. The

arrow enters the model at the lower limit and exits at the upper limit.

Outer limits:
o On the 2D picture, you should have a left/bottom — middie — right/top arrow.
»  The lower limit would come from the leftmost/lowest possibie such arrow. i
*  The upper limit would come from the rightmost/highest possible such arrow.




Ex2: Let E be the wedge in the first octant cut from the cylindrical solid ¥* + 22 <1 by the planes

y=x and x=0. Evaluate szdv.
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Ex3: Go back to example 2 but this time evaluate Hj'zdv with respect to x first.
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2. Triple Integrals over a General Solid (for those who like memorization)

Typel: When the solid E is bounded between two continuous functions SO ras

Z=u, (x,y) and z=1u, (x,y) we describe E as:

E={(x5.2)|(xy)e D andu, (x,y) <z Su, (%))

where D is the projection of £ onto xy-plane.
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The first (innermost) integration is with respect to z, after that a function of x and y remains. This

function then gets integrated over region D in xy-plane which can be evaluated as we learned in the
calculus il as a type | or | double integral.

Type2: When the solid E is bounded between two continuous functions .

x=u,(v,z) and x=u, (y,2) we describe E as:

E= {(x,y,Z) | (».z)eD and u,(y,z)<x<u, (y,z)} 4 _‘ﬁ:;\ 1:)/
where D is the projection of £ onto yz-plane. P {/“" ; y’ ,w\:
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Type3: When the solid £ is bounded between two continuous functions )

y=u, (x,z) and y =u, (x,z) we describe £ as:

E:{(x,y,z)|(x,z)eDandu,(x,z)SySuz(x,z)} ol | v
where D is the projection of £ onto xz-plane. T
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Sometimes you have a choice to choose between type |, 2 or 3 and may find one type easier. Thisis a

case where practice is superior to memorization.
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3. Applications of Triple Integrals

Recall that if f(x) = 0, then the single integral {” f(x) dx represents the area under the
curve ¥ = f{x) from a to b, and if f(x, y) = 0, then the double integral j'j'D flx, ) dA rep-
resents the volume under the surface z = f(x, ¥) and above D. The corresponding inter-
pretation of a triple integral ﬂl e f(x. 3, 2) dV, where f(x,y.2) = 0, is not very useful
because it would be the “hypervolume” of a four-dimensional object and, of course, that
is very difficult to visualize. (Remember that E is just the domain of the function f; the
graph of f liesin four-dimensional space.) Nonetheless, the triple integral ‘ff_I'E fix, y,z)dV
can be interpreted in different ways in different physical situations, depending on the
physical interpretations of x, y, z, and f(x, y, ).

Let’s begin with the special case where f(x, y, z) = 1 for all points in E. Then the
triple integral does represent the volume of E:

WE) = ﬂ dv
E

Ex4: Use a triple integral to find the volume of the solid enclosed between the cylinder x* + y* =9 and

the planes z=1and x+z =35. Slep 1. rhe pic
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Ex4: Consider the integral / :L?;J.:Jjuyzf sin (x4)dxdydz
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Ex5: Write five other iterated integrals that are equal to .‘-01 I:h L ;P I (x, y,z)dz dy dx
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