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Surface Integrals 

Objectives: 

1. Parametric surfaces  

2. Surface integrals  

3. Surface integrals of vector fields 

We have studied integrals on intervals on the real line, on regions in the plane, on solid regions in space, 

and along curves in space. One situation is still unexplored. Suppose a sphere has a known temperature 

distribution; perhaps it is cold near the poles and warm near the equator. How do you find the average 

temperature over the entire sphere? In analogy with other average value calculations, we should expect 

to "add up" the temperature values over the sphere and divide by the surface area of the sphere. 

Because the temperature varies continuously over the sphere, adding up means integrating. How do you 

integrate a function over a surface? This question leads to surface integrals. 

It helps to keep curves, arc length, and line integrals in mind as we discuss surfaces, surface area, and 

surface integrals. What we discover about surfaces parallels what we already know about curves - all 

"lifted" up one dimension. 

Parallel Concepts 

 

Curves           Surfaces 

 Arc length  Surface area 
 Line integrals  Surface integrals 
 Parameterization with  

one parameter t 

 

 Parameterization with  

two parameters u and v 

1. Parametric surfaces 

A curve in 
2
is defined parametrically by      ,r t x t y t , for a t b  ; it requires one parameter 

and two dependent variables. Stepping up one dimension, to define a surface in 
3

we need two 

parameters and three dependent variables. Letting u and v be parameters, the general parametric 

description of a surface has the form:        , , , , , ,r u v x u v y u v z u v . 
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We make the assumption that the parameters vary over a rectangle   , : ,R u v a u b c v d     .  

As the parameters (u,v) vary over R, the vector        , , , , , ,r u v x u v y u v z u v  sweeps out a surface 

S in 
3
.  Here are three graphical examples: 

 A cylinder: 

 
 A cone: 

 
 A sphere: 
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 A function: 

One other key example is when a surface is described explicitly as  ,z g x y .  In this case we 

parameterize with    , , , ,r u v u v g u v  or even better    , , , ,r x y x y g x y . 

 

2. Surface Integrals 
 

We now develop the surface integral of a scalar-valued function f on a smooth parameterized surface S 

described by the equation        , , , , , ,r u v x u v y u v z u v where the parameters vary over a 

rectangle   , : ,R u v a u b c v d     . The functions x, y, and z are assumed to have continuous 

partial derivatives with respect to u and v.  

 

The rectangular region R in the uv-plane is partitioned into rectangles, with sides of length u and v , 

that are ordered in some convenient way, for k=1,…,n. The kth rectangle 
kR corresponds to a curved 

patch
kS  on the surface S, which has area 

kS . 

 
To construct the surface integral we define a Riemann sum, which adds up function values multiplied by 

areas of the respective patches:  
1

, ,
n

k k k k

k

f x y z S


 .  But what is 
kS ?   

 

Two special vectors are tangent to the surface at P; these vectors lie in the plane tangent to S at P. 

 

 u

r
t

u





is a vector tangent to the surface corresponding to a change in u with v held constant. 

 
v

r
t

v





is a vector tangent to the surface corresponding to a change in v with u held constant. 

 

Consider the picture on the next page 
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The details require care and are mapped out in the text.  But the main point is that the area of the patch 

is approximated by the area of the parallelogram which has area k u v u vS t u t v t t u v          

 

Thus    
1 1

, , , ,
n n

k k k k k k k u v

k k

f x y z S f x y z t t u v
 

      and allowing the widths of rectangles in terms 

of u and v to approach zero, we arrive at: 

 

   
, 0

1

, , lim , ,
n

k k k u v
u v

kS

f x y z dS f x y z t t u v
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Definition: Surface Integral of Scalar-Valued Functions on Parameterized Surfaces 

Let f be a continuous scalar-valued function on a smooth surface S given parametrically by 

       , , , , , ,r u v x u v y u v z u v , where u and v where the parameters vary over a 

rectangle   , : ,R u v a u b c v d     . Assume also that the tangent vectors 

, ,u

r x y z
t

u u u u

   
 
   

and , ,v

r x y z
t

v v v v

   
 
   

 are continuous on R and the normal 

vector 
u vt t  is nonzero on R. Then the surface integral of f over S is 

        , , , , , , , u v

R R

f x y z dS f x u v y u v z u v t t dA    

 

Important note: If  , , 1f x y z  , then the surface integral represents the area of S. 

 

Ex1:  Evaluate the surface integral 

S

xyz dS  where S is the part of a cone with parametric equations 

cos sin 0 1 0
2

x u v y u v z u u v         
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Notation: ds vs dS  

 For line integrals we have  'ds r t dt .   

 For surface integrals we have u vdS t t dA   or perhaps 
r r

dS dudv
u v

 
 
 

 

Ex2: Evaluate the surface integral 

S

xz dS  where S  is the part of the plane 1x y z    that lies in 

the first octant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem: Evaluation of Surface Integrals of Scalar-Valued Functions on Explicitly Defined Surfaces 
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Let f be a continuous function on a smooth surface S given by  ,z g x y , for (x,y) in a region 

R. The surface integral of f over S is: 

     2 2, , , , , 1x y

R R

f x y z dS f x y g x y z z dA     

Once again, if  , , 1f x y z  , then the surface integral represents the area of S. 

Ex3: Evaluate the surface integral 
2 2

S

y z dS  where S  is the part of the cone 
2 2z x y  that lies 

between the planes 1z   and 2z  .  
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3. Surface Integrals of Vector Fields 

Just as we did with line integrals we now need to move on to surface integrals of vector fields.  Recall that 

in line integrals the orientation of the curve we were integrating along could change the answer.  The 

same thing will hold true with surface integrals.  So, before we really get into doing surface integrals of 

vector fields we first need to introduce the idea of an oriented (two sided) surface.   

An example of a nonoriented surface is a Mobius strip which has only one side.   

 

Let us start off with a surface that has two sides which means that it has a tangent plane 

at every point (except possibly along the boundary).  Making this assumption means that 

every point will have two unit normal vectors, 1n  and 2 1n n  .  This means that every 

surface will have two sets of normal vectors.  If unit normal vector varies continuously 

over S , then S  is called an oriented surface.  The set that we choose will give the 

surface an orientation.  Hence there are two possible orientations for any orientable surface. 

 

Suppose S  is a smooth orientable surface given in parametric or vector form  ,r u v .  Since the normal 

vector is perpendicular to the tangent plane, and ut  and  vt  are on the tangent plane, the normal vector 

is their cross product.  Unitizing it, we’ll get the unit normal vector: 
u v

u v

t t
n

t t
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Unless otherwise specified, we will assume that upward orientation (positive z) is a positive orientation 

n while downward orientation, is given by n .  Similarly on closed surfaces, we assume that positive 

orientation points out of the closed surface.   

Now we are ready to talk about the definition of surface integrals of vector fields over S  which is equal 

to the surface integral of its normal component over S .  This integral is used to calculate flux: 

Definition: If F is a continuous vector field defined on an oriented surface S with unit normal vector n , 

then the flux as calculated using the surface integral of F over S is: 

 flux
u v

u v u v

u vS S R R

t t
F dS F n dS F t t dA F t t dA

t t


         


     

Ex4: Let S  be the surface defined by cos sin 0 1 0
2

x u v y u v z v u v         and 

suppose that S  is oriented upward.  Find the flux of the flow field  , ,F x y z xi y j zk    across S . 
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Now suppose  ,z G x y  is how we define the surface.  Then: , ,1x y

G G
t t

x y

 
   

 
 and unitizing 

it we’ll have:   , , , ,1x y

G G
F t t f g h

x x

 
     

 
Hence:  

flux
S R

G G
F dS f g h dA

x y

  
      

  
   

This formula assumes the upward orientation of S.  For downward orientation, multiply by -1.  Similar 

formulas can be worked out if S is given by  ,y H x z or  ,x K y z . 

Ex5: Let S  be the surface  sinz x y , 0 2x  , 0 y    with upward orientation.  Evaluate the 

surface integral 

S

F dS  of the vector field  , ,F x y z yzi zx j xyk   . 


