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The preceding section gave a version of the Fundamental Theorem of Calculus that applies to 

line integrals. In this lesson and for the remainder of the course, you will see additional 

extensions of the Fundamental Theorem that apply to regions in 2 and 3 . All these 

fundamental theorems share a common feature. Part 2 of the Fundamental Theorem of Calculus 

says 

   
b

a

df
dx f b f a

dx
   

which relates the integral of 
df

dx
 on an interval [a,b] to the values of f on the boundary of [a,b]. 

The Fundamental Theorem for line integrals says 

   
C

dr B A       

which relates the integral of  on a piecewise-smooth oriented curve C to the boundary values 

of  . (The boundary consists of the two endpoints A and B.) 

The subject of this section is Green's Theorem, which is another step in this progression. It relates the 

double integral of derivatives of a function over a region in 2 to function values on the boundary of 

that region. 

I. Circulation form of Green’s Theorem 

Recall that the circulation 
C C

F dr F T ds     measures the net component of F in the direction 

tangential to C.  A nonzero circulation on a closed curve says that the vector field must have 

some property inside the curve that produces the circulation.  You can think of this property as a 

net rotation. 

 



17.4: Green’s Theorem 

Math 264 

 

Page 2 of 8 
 

Theorem: Green's Theorem (Circulation Form) 

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that 

encloses a connected and simply connected region R in the plane. Assume ,F f g , 

where f and g have continuous first partial derivatives in R. Then 

work/circulation
C C C R

g f
F dr F T ds f dx g dy dA

x y

  
        

  
     

Interpretation: The integrand of the double integral is the two-dimensional curl of the vector 

field.  So Green’s Theorem says that the circulation around the boundary of a region is equal to 

net curl across the region. 

 

Ex 1: Evaluate 
4work/circulation

C

x dx xy dy  , where C is the triangular curve consisting of 

the line segments from (0,0) to (1,0), from (1,0) to (0,1), and from (0,1)  to (0,0). 
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An interesting application of Green’s Theorem is that it can be used to find the area enclosed by 

a curve.  In the 1850’s (and later) this concept was used to develop a tool called a planimeter 

with which you could trace the boundary of a region (say on a map) and the device tells you the 

area enclosed. 

 

The formula itself comes from applying Green’s Theorem to the two fields , 0,F f g x   

and , ,0F f g y  .  Their difference gives:  
1

Area of enclosed by
2

C

R C xdy y dx  . 

Ex 2: Use Green’s Theorem to derive the area of the ellipse 
2 2

2 2
1

x y

a b
   
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II. Flux form of Green’s Theorem 

Recall that the outward flux of F across the closed curve C is  
C C

F n ds f dy g dx    .  

Applying Green’s Theorem, we have: 

 

Theorem: Green's Theorem (Flux Form) 

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that 

encloses a connected and simply connected region R in the plane. Assume ,F f g , 

where f and g have continuous first partial derivatives in R. Then 

 
C C R

f g
F n ds f dy g dx dA

x y

  
     

  
    

where n  is the outward unit normal vector on the curve. 

 

Interpretation: The two line integrals on the left side give the outward flux of the vector field 

across C. The double integral on the right side involves the quantity 
f g

x y

 


 
, which is the 

property of the vector field that produces the flux across C. This factor is called the two-

dimensional divergence.  That is, the net flux across the boundary is equal to the total divergence 

across the enclosed region. 
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Ex3: Evaluate    flux 2 3 3 4  
C

x y dy x y dx    , where  C is the unit circle oriented CCW. 

 

 

 

 

  



17.4: Green’s Theorem 

Math 264 

 

Page 6 of 8 
 

III. Stream functions (a cool connection) and parallel properties 

One reason for introducing two forms of Green’s Theorem (circulation and flux) is that it will 

simplify later work with Stoke’s Theorem and the Divergence Theorem.  To complete this, we 

need to go backward and connect divergence and flux to a concept introduced at the beginning of 

the chapter: the stream function.  The stream function is used in fluid dynamics (a branch of 

engineering) where it is used to model fluids that are incompressible (ex: hydraulics). 

Let us begin by looking at the parallels: 

 

curl 0

curl circulation/work conservative potentialfunction



    

div 0

divergence flux ___________________ ____________ function



    

 

And the parallel processes: 

Integrate f
x





and g

y





to find the potential function  . 

Integrate f
y





and g

x


 


to find the stream function  . 

Vocabulary: If the stream function exists, we say that the field is source-free. 

It can be shown that the vector field F is 

everywhere tangent to the streamlines, 

which means that a graph of the streamlines 

shows the flow of the vector field. Finally, 

just as circulation integrals of a conservative 

vector field are independent of path, flux 

integrals of a source-free field are also 

independent of path. 
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Here are the parallel properties of conservative and source-free vector fields in two dimensions. 

We assume C is a simple piecewise-smooth oriented curve and is either closed or has endpoints 

A and B. 

 

With Green's Theorem in the picture, we may also give a concise summary of the various cases 

that arise with line integrals of both the circulation and flux types. 
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A proof of Green’s Theorem when restricted to the special regions pictured: 

 

      1 2, : andR x y a x b G x y G x     and       1 2, : andR x y c y d H y x H y      

Here the circulation form of Green’s Theorem is 
C R

g f
f dx g dy dA

x y

  
   

  
   


