The Comparison Tests

The Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- (i) If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent.
- (ii) If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ is also divergent.

In using the Comparison Test we must, of course, have some known series $\sum b_n$ for the purpose of comparison. Most of the time we use one of these series:

- A p-series $[\Sigma 1/n^p \text{ converges if } p > 1 \text{ and diverges if } p \le 1;$
- A geometric series $\left[\sum ar^{n-1}\right]$ converges if |r| < 1 and diverges if $|r| \ge 1$;

Ex I: Determine the convergence of the following.

a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} 3^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{(n^2+3)^{1/3}}$$

Visualize the power and limitations of the comparison test as follows:

NOTE 1 Although the condition $a_n \le b_n$ or $a_n \ge b_n$ in the Comparison Test is given for all n, we need verify only that it holds for $n \ge N$, where N is some fixed integer, because the convergence of a series is not affected by a finite number of terms.

Ex2: Determine the convergence of the following.

$$\sum_{n=1}^{\infty} \frac{n^2}{n^4 + n - 10}$$

THE LIST: (1.) The geometric series converges when |r| < 1. (2.) The harmonic series diverges. (3.) Telescoping series. (4.) The integral test. (5.) The test for divergence. (6.) The p-series converges for p > 1. (7.) The comparison test (weak).

NOTE 2 The terms of the series being tested must be smaller than those of a convergent series or larger than those of a divergent series. If the terms are larger than the terms of a convergent series or smaller than those of a divergent series, then the Comparison Test doesn't apply.

To be able to answer the last problem we use the following variation of the Direct Comparison test.

The Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c$$

where c is a finite number and c > 0, then either both series converge or both diverge.

A couple of special cases:

- If $\lim_{n\to\infty}\frac{a_n}{b_n}=0$ and $\sum_{n=1}^\infty b_n$ converges, then $\sum_{n=1}^\infty a_n$ converges.
- If $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ and $\sum_{n=1}^\infty b_n$ diverges, then $\sum_{n=1}^\infty a_n$ diverges.

Back to Ex2:
$$\sum_{n=1}^{\infty} \frac{n^2}{n^4 + n - 10}$$

Back to ExIb:
$$\sum_{n=1}^{\infty} \frac{1}{\left(n^2 + 3\right)^{1/3}}$$

THE LIST: (1.) The geometric series converges when |r| < 1. (2.) The harmonic series diverges. (3.) Telescoping series. (4.) The integral test. (5.) The test for divergence. (6.) The p-series converges for p > 1. (7.) The comparison test (weak). (8.) The limit comparison test (stronger)