10.4: The Integral Test
Math 264

The Integral Test

Case |: When the integral (gray area) converges, so does the left sum.
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The Integral Test Suppose f is a continuous, positive, decreasing function on [1, )
and let a, = f(n). Then the series =,-1 a, is convergent if and only if the improper
integral [” f(x) dx is convergent. In other words:

(i) Ifj? f(x) dx is convergent, then ), a, is convergent.

n=1

(i) If J? f(x) dx is divergent, then D, g, is divergent.

n=1

NOTE We should not infer from the Integral Test that the sum of the series is equal to
the value of the integral. In fact,

A s

1 2 |
1? = % whereas L = dx =

n

Therefore, in general,
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a, # J?f(x) dx

n=
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NOTE When we use the Integral Test, it is not necessary to start the series or the integral
at n = 1. For instance, in testing the series

- I [ I
— ; — d
2 n—3p owe ), x-32 "

Also, it is not necessary that f be alwavs decreasing. What is important is that f be wlii-
mately decreasing, that is, decreasing for x larger than some number N Then Z5-x a, is
convergent, so Z;-; d, is convergent.

> 1
Exl: Using the integral test, show (again) that the “Harmonic Series” Z—diverges.

n=1 N

THE LIST: (1.) The geometric series converges when |r| <1. (2.) The harmonic series diverges. (3.)

Telescoping series. (4.) The integral test.

Theorem If the series Y, a, is convergent, then lim a, = 0.

n=1 i—=

NOTE 1 With any series ¥ a, we associate two sequences: the sequence {s, } of its par-

tial sums and the sequence {a,} of its terms. If £ a, is convergent, then the limit of the
sequence {s, } is s (the sum of the series) and the limit of the sequence {a,} is 0.

NOTE 2 The converseis not true in general. If m,_.. a, = 0, we can not
conclude that £ a, is convergent. Observe that for the harmonic series £ 1/n we have
a, = 1/n — 0 as n — o, but we showed that £ 1/n is divergent.
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|E| Test for Divergence If lim a, does not exist or if lim a, # 0, then the

n—sx n—s

series 2 a, is divergent.

n=1

NOTE 3 If we find that lim, ... a, # 0, we know that X a, is divergent. If we find that
lim, .= a, = 0, we know nothing about the convergence or divergence of = a,. Remember
the warning in Note 2: If lim, . a, = 0, the series X a, might converge or it might diverge.

Ex2: Show that the series Z

diverges.
1 2n+5

THE LIST: (1.) The geometric series converges when |r| <1. (2.) The harmonic series diverges. (3.)

Telescoping series. (4.) The integral test. (5.) The test for divergence.

One simple but powerful application of the integral test is what we call the p-series. This will be a
powerful tool for us in the next section when we learn about comparison tests.

% p-series

=1 . 1 |converges 1 >1
p-series are series of the form E — In which pis a fixed number. E ) & f p
o n” ~'n” | diverges if p<l1

E] The p-series 2 — is convergent if p > 1 and divergent if p <

n=1 1

Ex3: Do the following series converge or diverge!?
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- 6
b) Repeat the same example using the integral test: Z_s

n=l1

THE LIST: (1.) The geometric series converges when |r| <1. (2.) The harmonic series diverges. (3.)

Telescoping series. (4.) The integral test. (5.) The test for divergence. (6.) The p-series converges for
p>1.

The last item in this section is our first error bounding technique. It is computationally convenient to
approximate infinite series with partial sums. But when approximating, it is important to know the
worst case scenario (maximum error). One way to do this is to bound the remainder using an
improper integral.

n o=l =2 n=tn-d --

For example, we can use this technique to show that we need n >1000 terms to guarantee that
1 Sl
— =) —=*0.001.
; k2 z k2

k=1

Page 4 of 4



