Name: $\qquad$
Final Exam
Math\& 264: Multivariable Calculus
Instructions: Please carefully complete these questions by hand. Be sure to show all work including sketching relevant graphs, working carefully through limits, evaluating integrals, thoroughly working through convergence/divergence tests, and providing exact answers.

Should you choose to work these on scratch paper, please do not put more than one question on a page. Additional sheets of paper are acceptable.

Upload your solutions to Gradescope by 9 am on the day of your presentation (6/8-10). During your presentation time, you will be asked to explain your thought process and reasoning on two randomly assigned questions. Late solutions are available thru 2 pm on (6/10) with a 2 point penalty (smaller penalties if you can document that this is a revision the only incorporates minor changes).

Please make sure to sign up for your presentation slot. If you are unavailable for any of the times available, please send me a note in Slack and we will find a time that works for you.
https://docs.google.com/spreadsheets/d/1IGUR3J5qnXkbLUhWWeoMjbxYb1peN9It5gZYj7wAtCo/edit? usp=sharing
(1.1) Find the limit of the sequence $\left\{\frac{\ln n}{n^{1.3}}\right\}$ or determine that the sequence diverges.
(1.2) Evaluate the series $\sum_{n=0}^{\infty} e^{-4 n}$ or state that it diverges.
(1.3) Determine the convergence or divergence of the series $\sum_{k=3}^{\infty} \frac{2}{k(\ln k)^{2}}$. If it converges, does it converge conditionally or absolutely?
(1.4) Determine whether the series $\sum_{k=1}^{\infty} \sqrt{\frac{k^{3}}{16 k^{5}+3}}$ converges or diverges. If it converges, does it converge conditionally or absolutely?
(1.5) Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{k} k^{2}}{\sqrt{k^{6}+4}}$ converges or diverges. If it converges, does it converge conditionally or absolutely?
(1.6) Determine whether the series $\sum_{k=1}^{\infty}\left(\frac{k}{k+3}\right)^{4 k^{2}}$ converges or diverges. If it converges, does it converge conditionally or absolutely?
(1.7) Determine ALL values of $x$ for which the series $\sum_{k=1}^{\infty} \frac{x^{k}}{7^{k}}$ converges.
(1.8) Use the methods developed in this class to find the exact area of the region bounded by all leaves of the rose $r=4 \cos 5 \theta$.
(1.9) Rewrite the integral $\int_{0}^{5} \int_{-1}^{0} \int_{0}^{6 x+6} d y d x d z$ in the order of integration $d z d x d y$ and then evaluate the resulting integral.
(1.10) Find the volume of the solid below the hyperboloid $z=5-\sqrt{1+x^{2}+y^{2}}$ and above the region $\{(r, \theta): \sqrt{3} \leq r \leq \sqrt{15}, 0 \leq \theta \leq 2 \pi\}$
(1.11) Find the mass of the solid paraboloid $D=\left\{(r, \theta, z): 0 \leq z \leq 100-r^{2}, 0 \leq r \leq 10\right\}$ with density $\rho(r, \theta, z)=1+\frac{z}{100}$.
(1.12) Find the circulation about the path $\vec{r}(t)=\langle 5 \sin t, 2 \sin t, 4 \cos t\rangle$ for $0 \leq t \leq 2 \pi$ over the field $\stackrel{\rightharpoonup}{F}=\left\langle 2 x y+z^{2}, x^{2}, 2 x z\right\rangle$.
(1.13) Evaluate the line integral $\int_{C} \nabla\left(\frac{x^{2}+y^{2}+z^{2}}{2}\right) \cdot d \vec{r}$ along the oriented curve
$\vec{r}(t)=\left\langle\cos t, \sin t, \frac{t}{\pi}\right\rangle$ for $\frac{\pi}{6} \leq t \leq \frac{3 \pi}{2}$. Evaluate the integral directly and using the Fundamental Theorem for Line Integrals.
(1.14) Compute the circulation and outward flux over the field $\vec{F}=\nabla\left(\sqrt{x^{2}+y^{2}}\right)$ and across the boundary of the region $R=\{(r, \theta): 2 \leq r \leq 7,0 \leq \theta \leq \pi\}$.
(1.15) Compute the curl of the field $F=\left\langle 7 x z^{7} e^{y^{6}}, 6 x z^{7} e^{y^{6}}, 7 x z^{6} e^{y^{6}}\right\rangle$.
(1.16) Evaluate the Jacobian $J(u, v, w)$ for the transformation $x=2 v+2 w, y=u+w$, and $z=u+v$.
(1.17) Find the flux of $\vec{F}=\left\langle e^{-y}, 2 z, 4 x y\right\rangle$ across the curved sides of the surface $S=\{(x, y, z): z=\cos y,|y| \leq \pi, 0 \leq x \leq 4\}$ with an upward pointing normal vector.
(1.18) Evaluate $\iint_{S}(\nabla \times \vec{F}) \cdot \vec{n} d S$ where $\vec{F}=\langle x+y, y+z, z+x\rangle, S$ is the tilted disk enclosed by $\vec{r}(t)=\langle 2 \cos t, 3 \sin t, \sqrt{5} \cos t\rangle$, and with $\vec{n}$ pointed in an upward direction.
(1.19) Fourier's Law of heat transfer (or heat conduction) states that the heat flow vector $\vec{F}$ at a point is proportional to the negative gradient of the temperature; that is, $\vec{F}=-k \nabla \vec{T}$, which means that heat energy flows from hot regions to cold regions. The constant $k$ is called the conductivity (with units $\mathrm{W} / \mathrm{m}-$ K). The temperature function for the region $D=\{(x, y, z): 0 \leq x \leq 3,0 \leq y \leq 5,0 \leq z \leq 4\}$ is $T(x, y, z)=100-5 x-2 y+z$. Assume $k=1$. Find the outward flux.

