Name: \qquad
Assessment 1
Math\& 264: Multivariable Calculus
Instructions: Please carefully complete these questions by hand making sure to show all work. Upload your solutions to Gradescope by 8 am on Monday (4/13). During your presentation time, you will be asked to explain your thought process and reasoning on one randomly assigned question.
(1.1) Convert the equation $r=\frac{1}{2 \cos \theta+3 \sin \theta}$ to Cartesian coordinates. Describe the resulting curve.
(1.2) Find the slope of the line tangent to $r=8 \sin \theta$ at the point $\left(4, \frac{5 \pi}{6}\right)$
(1.3) Find the area of the region inside one leaf of $r=\cos (3 \theta)$
(1.4) Find the area of the region that lies between $r=1+\sin \theta$ and $r=1+\cos \theta$
(1.5) Find the length of the complete cardioid $r=4+4 \sin \theta$
(1.6) Evaluate $I=\iint_{R} \frac{d A}{\sqrt{16-x^{2}-y^{2}}}$ where $R=\left\{(x, y): x^{2}+y^{2} \leq 4, x \geq 0, y \geq 0\right\}$
(1.7) Evaluate $I=\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$
(1.8) Sketch and set up an iterated integral representing the region inside the limaçon $r=1+\frac{1}{2} \cos \theta$
(1.9) Use a double integral to find the area of the region bounded by the cardioid $r=2(1-\sin \theta)$
(1.10) Use a double integral to find the area of the region bounded by all leaves of $r=2 \cos (3 \theta)$

