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17.6: Suriace integral

[ P N A
Porh 264

We have studied integrals on intervals on the real line, on regions in the plane, on solid regions in space,
and along curves in space. One situation is still unexplored. Suppose a sphere has a known temperature
distribution; perhaps it is cold near the poles and warm near the equator. How do you find the average
temperature over the entire sphere? In analogy with other average value calculations, we should expect
to "add up" the temperature values over-the sphere and divide by the surface area of the sphere.
Because the temperature varies continuously over the sphere, adding up means integrating. How do you
integrate a function over a surface? This question leads to surface integrals.

It helps to keep curves, arc length, and line integrals in mind as we discuss surfaces, surface area, and
surface integrals. What we discover about surfaces parallels what we already know about curves - all

"lifted" up one dimension.

Paraliel Concepts

Curves Surfaces
e Arc length e Surface area
e Line integrals s Surface integrals
e Parameterization with e Parameterization with
one parameter t two parameters u and v

Obijective:

. Parametric surfaces
2. Surface integrals
3. Surface integrals of vector fields

I. Parametric surfaces

A curve in R?is defined parametrically by F(t):<x(t),y(t),;f(ﬁ>, for a <t<b; it requires one

parameter and two dependent variables. Stepping up one dimension, to define a surface in R’ we need
two parameters and three dependent variables. Letting u and v be parameters, the general parametric

description of a surface has the form: f(u,v) = <x(u,v),y(u,v),z(u,v)> .
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We make the assumption that the parameters vary over a rectangle R = {(u*v) afugbcsv< a’}.
As the parameters (u,v) vary over R, the vector 7 (u,v) = <x(u,v),y(u,v),z(u,v)> sweeps out a surface:
Sin R®. Here are three graphical examples:

e A cylinder:
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¢ A function:

One other key example is when a surface is described explicitly as z =g(x,y). In this case we

parameterize with 7 (u,v) = <u,v,g(u,v)> or even better F(x,y) = <x,y,g(x,y)>.

2. Surface Integrals

We now develop the surface integral of a scalar-valued function f on a smooth parameterized surface §
described by the equation ?(u,v):<x(u,v),y(u,v),z(u,v)> where the parameters vary over a

rectangle R = {(u,v) afu<shpcsvs d}. The functions x, y, and z are assumed to have continuous

partial derivatives with respect to u and v.

The rectangular region R in the uv-plane is partitioned into rectangles, with sides of length Ax and Av,

that are ordered in some convenient way, for k=I,...,n. The kth rectangle R, corresponds to a curved

patch .S-u-on the surface §, which has area AS,.
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To construct the surface integral we define a Riemann sum, which adds up function values mulitiplied by

areas of the respective patches: Zf(xk,y,‘,,zk )ASk . But whatis AS,? Consider the pic
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Two special vectors are tangent to the surface at P; these vectors lie in the plane tangent to § at P.

- v
e [ = o is a vector tangent to the surface corresponding to a change in u with v held constant.
u
= r . .
e tv = 5—- is a vector tangent to the surface corresponding to a change in v with u held constant.
v

The details require care and are mapped out in the text. But the main point is that the area of the patch
AulAvy

is approximated by the area of the parallelogram which has area AS, =|7, AuxZ,Av| =i, x£,
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Thus Zn:f(xk Vo2, JAS, = if(xk,yk, z, )|f“ x1,| AuAv and allowing the widths of rectangles in terms
k=l k=1

of uand vhapproach zero, we arrive at:

Auly
A

[[f(eyz)ds= tim > f(x,y.2)[ <1,
AV

Definition: Surface Integral of Scalar-Valued Functions on Parameterized Surfaces

Let fbe a continuous scalar-valued function on a smooth surface § given parametrically by

f‘(u,v) = <x(u,v),y(u,v),z(u,v)> , where u and v where the parameters vary over a

rectangle R = {(u,v) afu<hcLyvs d} . Assume also that the tangent vectors
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(L, =—= —,@,— and {, =—= ———,—)—}—,—— are continuous on R and the normal
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vector f x{, is nonzero on R. Then the surface integral of f over S is

_Uf(xay,z)ds =Lff(x(u,v),y(u,v),z(u,v))lfu X7,

dA

Important note: If f(x,y,z) =1, then the surface integral represents the area of S.

par of a
Exl: Evaluate the surface integral J.J. xyzdS where § is the*cone with parametric equations
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Notation: ds vs dS

e For line integrals we have ds = IF'(t)ldt

_|oF _oF
—_— >< ——
BETREY

e For surface integrals we have dS = ]f xf

dudv

Ex2: Evaluate the surface integral ”xz dS where § is the part of the plane x+ y+2z =1 that lies in
s

the first octant.
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Theorem: Evaluation of Surface Integrals of Scalar-Valued Functions on Explicitly Defined Surfaces

Let fbe a continuous function on a smooth surface § given by z = g(x,y), for (x,y) in a region

R. The surface integral of f over S is:

”f(x,y,z)dS:Hf(x,y,g(x,y)),/zf_ +z_§ +1dA 5 ® .
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Once again, if f(x,y,z) =1, then the surface integral represents the area of S.

Ex3: Evaluate the surface integral _U ¥’2*dS where S is the part of the cone z= \/Ixz +9° that lies
s

between the planes z=1 and z=2.
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3. Surface Integrals of Vector Fields

Just as we did with line integrals we now need to move on to surface integrals of vector fields. Recall that
in line integrals the orientation of the curve we were integrating along could change the answer. The
same thing will hold true with surface integrals. So, before we really get into doing surface integrals of

vector fields we first need to introduce the idea of an oriented (two sided) surface.

An example of a nonoriented surface is a Mobius strip which has only one side.

®
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Let’s start off with a surface that has two sides which means that“has a tangent plane at
1,
every point (except possibly along the boundary). Making this assumption means that ; ;
every point will have two unit normal vectors, 7, and 72 = —n. This means that every > |
E
surface will have two sets of normal vectors. If unit normal vector varies continuously [ .
gl
Y SN

over S, then S is called an oriented surface. The set that we choose will give the s

surface an orientation. Hence there are two possible orientatiorPfor any orientable surface.

#o i n}i

Suppose S is a smooth orientable surface given in parametric or vector form r(u,v) . Since the normal

vector is perpendicular to the tangent plane, and 7, and {, are on the tangent plane, the normal vector

. . s . . ’ . - tyxty
is their cross product. Unitizing it, we’'ll get the unit normal vector: n =

— —

Lty
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Unless otherwise specified, we will assume that upward orientation (positive z) is a positive orientation

n while downward orientation, is given by —#n . Similarly on closed surfaces, we assume that positive

orientation points out of the closed surface.

Now we are ready to talk about the definition of surface integrals of vector fields over .S which is equal

to the surface integral of its normal component over S'. This integral is used to calculate flux:

Definition: If F is a continuous vector field defined on an oriented surface S with unit normal vector #,

—t-u X ;v

then the flux as calculated using the surface integral of F over S is:
flux=[[ F-dS = [[ F-rds =[] F-2== i
s s R \fy(l‘v

Ex4: Let S be the surface defined by x=ucosv y=usiny z=a4 0<u <l 0<v<x and

dA :HF-(Z, xz,)dA
R

suppose that S is oriented upward. Find the flux of the flow field F(x, y,z) = )(;er} + 2. across .
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Now suppose z = g(x,y) is how we define the surface. Then: 7. X;y = <— 3
x

it we'll have: ﬁ(fl xf‘) = <f,g,h>-<—aq—g,—g-g-,]>Hence:
ox  Ox

“FdS ﬁ( % _ ‘zgm)cm
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_%g

,1) and unitizing
oy’

This formula assumes the upward orientation of S. For downward orientation, muitiply by -I. Similar

formulas can be worked out if § is given by y = h(x,z) or x= k(y,z) .

Ex5: Let S be the surface z=xsiny, 0<x<2, 0<y<x with upward orientation. Evaluate the

surface integral _UF .dS of the vector field F(x,y,z) = yzi+zxj+xyk.
s
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