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Line Integrals

Objective:

I.  Scalar line integrals in two and three dimensions
2. Line integrals across vector fields (work)
3. Circulation and flux

I. Scalar line integrals in two and three dimensions

In previous chapters we considered three kinds of integrals in rectangular coordinates: single integrals
over intervals, double integrals over two-dimensional regions, and triple integrals over three-dimensional
regions. In this section we shall discuss line integrals, whlch, are integrals over curves in two or three-
dimensional space. Integrals over curves were mventec}/m the early 9% century to solve problems
involving a variety of things such as fluid flow, force, electricity, and magnetism. The application that is
easiest to visualize is the surface area of the curtain “under” a surface and along a curve C on the xy-plane.

in order to unpack this surface area, we will need to parameterize the curve C which requires that we
distinguish between the parameter t (not visible on the graph) and the arclength s (visible).

i The pammetef mssﬂes ot the is. As ¥ vasizs from @ to B, the
Pourve Can tive xy-plane i qeaeited fos ona), 1R e
IS BT 108

With this in mind, we can defin an‘d_ calculate the scalar line integral in the plane which represents that
area of the curtain “under” f and the xy-plane along the curve C.

Definition: Scalar Line Integral in the Plane
Suppose the scalar-valued function f is defined on a region containing the smooth curve C given
by 7(t)={(x(t),y(¢)) for a<t<b.
The line integral of fover Cis J.C f(x(t),y( )ds = iméz j( ( ) ( Z))Ask provided this
; f—>

limit exists over all partitions of [g,b]. When the limit exists, f is said to be integrable on C.
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The key to applying this definition is finding a formula for ds. To do this, recall that if a space curve is o
/ a
parameterized by F(t), then the cumulative arclength of C over the interval [a,l] is S(l‘) :I F '(u))du

which can be differentiated to reveal that S'(t) = |77'(t)l or using Leibniz notation ds = If'(t)i dt

The punchline: To evaluate a scalar line integral “under” f and along the path C parameterized by F(t)

with a <t <b , we use the formulas:

inR’ ! rds = £(x(e), 0 ()7 (e)|ar

and
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Ex|: Find the area of the surface extending upward from the circle xt+ y2 =1 to the parabolic cylinder
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'jmportant notes:

e The procedure for evaluating the line integral _‘- f ds (Formulas are given in two dimensions. The
¢

three dimensional versions are analogous).

o Find a parametric description of C in the form ?(t) = <x(t),y(t)> on a<t<h

| 2 2 ‘ .
o Compute ‘}7'(1)‘ = \/(x'(t)) +(y'(t)) whieh e peea to B1) ds.
o Make substitutions for x and y in the integrand and evaluate an ordinary integral:
[ras=] r(x(),y()|F (o)
C
e The value of the line integral doesn’t depend on the parametrization of the curve, provided that
the curve is traversed exactly once as ¢ increases from a to b.

e Ordinary single integrals are a special case of the line integral where C is the line segment joining
(a,O) and (b,O) with parametric equations x=x y=0 a<x<). In this case the line

integral formula simplifies zé: .L‘ f(x,y)ds = Lbf(x,())dx

o [If C is a piecewise-smooth curve, then we find the line integral for each piece N
& )
and add them to get the line integral over C. AN

f.rtesias— | flxy)ds !( FOoy)ds bt | flny)ds e

&

e Any physical interpretation of a line integral depends on the physical
interpretation of the function f. For example, if / represents the density of a thin wire shaped

like C, then the total mass is the line integral of f/ over C.

e When setting up a line integral, the most difficult step is parameterizing the curve C. Two common
parameterizations are:

o A line segment that starts with a and ends in E is given by:
r()=(1-t)r+1r, 0<1<]
o Adcircle (0 <t<£ 27[) or a semicircle (O <t< 72') centered at (x,y) = (a,b) with radius

ris given by x=a+rcost and y=>b+rsint for counter clockwise movement.
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Il. Line integrals across vector fields (work)

This is what we have learned so far about work:

(review): Work Done by a Constant Force:

e If an object is moved a distance d in the direction of an applied constant force F, then the
work W done by the force is defined as W = Fd

e The work done by a constant force F that moves an object.from P to Q (creating

gorice. thotr the work dplg
deponds op +he +a#¢3e.pﬁa-'$
Comporedts of the Corca

displacement vector D) can be calculated by W = F-D e2°®

(review): Work Done by a Variable Force:

sokbiect 4o
e If an object moves along a straight line from a to b, &y a continuously varying force (not

constant) f(x) we define the work as W = J‘hf(x)dx

(new): Work required to move a particle through a vector field:

e If an object moves along a smooth curve C, through a continuous force field

F= f(x,y);+ g(x,y);' defined on IR?, then the work done is obtained by integrating the
tangential component of force along the curve so W = J-C]_:;-?ds where T(x, y) is the unit

tangent vector at the point (x,y) on C.
At first glance this looks complicated, but work is actually straight forward to implement. Recall

that if the curve is given by the vector equation ;(t) = x(t);+ y(l‘)j, then f(t) =m.
r'(t '

This means that we calculate work using the formula: L wer ke dé—Pﬂf)JS on>
W= jFTds_jF ]r }dt—de* . ravgesha)
t)’ /- LMpopessr o

Or simply work = L F-dr

The definition in three dimensions is analogous.
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Ex2: Find the work done by the force field F =x3y;+(x—y)j on a particle that moves along the

parabola y = x* from (—2,4) to (1,1).
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One common way to write the work formula is reference x, and y rather than r. To do this, recall that
?(t) = <x(t),y(t)> . This means that % = F'(t) = <x'(t),y'(t)> and the work formula is:

work :J.Cﬁ-df = L(f(x,y)u,g(x,y»-<x'(t),y'(l)>a’l‘ ZL_f(x,y) dx, +g(x,y) dhﬂy or simply

¥ p x(t)dr yi{1)t

work = Lﬁ-dﬁ = jcfdx+gdy
/‘@q,w'f‘eé’ e

Ex3: Evaluate the work = Iny dx + (x2 +y? )dy moviﬁjg a particle along the circular arc C.
N
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In general, the value of a line integral (and work) depends on three things:

e The location of the endpoints of the curve.

The length and shape of the path (later will we learn conditions that cause the integral to be
independent of path)

e The direction or orientation of the curve.
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- desotes the curve consisting of the same points as C but with the opposite ori-

entation (from initial point 8 to terminal point A in Figure 8), then we have L
C
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But it we integrate with respect w are length, the value of the line integral does not . .
change when we reverse the orientation of the curve: g
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This is because As, s always positive, whereas Ax; and Ay change sign when we reverse
the orientation of C.
Ex4: Evaluate the work = Ixzy dx + xdy for a particle to move in a counterclockwise direction around
a
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Ex5: Evaluate I(xy + ZB)ds where C is the portion of the helix given by the parametric equations:
v
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Exé: Find the mass of a thin wire if the density function is p(x,y,z) =kz with k >0 and shaped in the

form of a helix with parametric equations x=cost y=sint z=2t 0<t<r.
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Ex7: Evaluate J'('yzdx+xzdy+xydz where C is represented by ;(t) :t?+z‘2j+t3/; 0<t<1.

Note! f’ = <lﬁ?:l X2 ,X(j7

—

‘Hfif | PO AL

— 2 z <+ &
r () = <—t"‘:‘ 1{7 O o & ¢ {

f}

A7 = v re, 3eT) e
%ﬁﬁ Ji sobshivte awnd iuf&g@ﬁa.
: s 9 Z 2
wbr{c-:j\ <‘t , € lt>e<l,'2.:t:‘7“‘-'>o'f
o

|
= g (‘eg_; e+ 2«:’\ Jd<
o I’—w—'/

[<1

b &

i)

l
ol

Y

Page 11 of 124



[7.2: Line Integrals
Math 264

HI. Circulation and flux

A number of the forthcoming theorems/results rely on the idea of a closed path (or closed curve). A

closed curve is one whose initial and terminal points are the same.

In this case, we give the work to move an object around a closed path a new name: circulation.

Definition: Circulation
Let 7 be a continuous vector field on a region D of R’ and let C be a closed smooth oriented
curve in D. The circulation of F is circulation = work zqs F-Tds where Cﬁ represents the
c
line integral around a closed path.

Ex8: Let C be the unit circle with counterclockwise orientation. Find the circulation on C for the radial

flow field F = <x,y> and the rotation flow field F' = <—y,x>
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While circulation is a measure of the tangential component of field along a path, flux is a measure of the

normal component of the field along a path.
In two dimensions, this will be flux =J. F -7ids where

i =Tsk (]E being the unit vector in the z direction).

F points outward on
and gives a positive:
contribistion to flux

While we may not yet be able to calculate the flux, we already know enough to compare the flux and

circulation in radial and rotational flows.

Al vecdons

Al vecjons
b )
MO rma | W\ ! b MHW'M\
o C L3 : / 5 ’ X +o C
3 ,j—J"‘“—-fm 4 L4
I o, _r/ \ e .
. i }}u I ‘ | i .
PRty A /;(—’ . T ¥
*,
» \"\,,4___“_5""(:/ R
RN
» ’ Ay I 4
¥ %
? 1 .

"Onthennitewcle F . -3, ¥ istengent to O

: On the unit caicle. ¥ - x 3 is orthogenal to
and has zero ontward flax on C.

€ and has positive outward flux on C.

Page 13 of 14

checlk. oot
Nap;fv(a“\‘a
{326



17.2: Line Integrals

Math 264
Ex9: Derive the (computationally nice) formula for flux in two dimensions where F = (f,g)
represents a continuous vector field traversed by path C: 7 (t) = <x(t), y(z‘)> fora<t<b.
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