17,1 Vector Fields
Math 264

IN THIS CHAPTER WE STUDY the calculus of vector fiekds. (These are functions that assign vec-
tors to points in space.) In particular we define line integrals {which can be used to find the work
done by a force field in moving an object along a curve). Then we define surface integrals {which
can be used (o find the rate of fluid flow across a sarface). The conpections between these new )
types of integrals and the single, double, and triple integrals that we have already met are given na! ¥
by the higher-dimensional versions of the Fundamental Theorem of Calculus: Green’s Theorem, _PDV,
Stokes” Theorem, and the Divergence Theorem. o s e

Vector Fields

Objective:

. Vector fields and examples R

2. Gradient Fields «<———— "TL'@-SG. e -\'c;-?h -S\-E.M,’) la‘ogfv

avd  (Mpprrapy e ta c’J’laf"hZ_/'

I. Vector Fields
In this section we consider functions called vector fields that associate vectors with points in two (or
three) dimensions. That means they have domain as a set of points in R? (or R*) and range as a set of
vectors in V, (or V;). These functions play an important role in the study of fluid flow, gravitational force

fields, electromagnetic force fields and a wide range of other applied problems. Ve generally use F to

denote a vector field.

For two dimensions:

Flx,p)=f(xy)itg(xy)j= (f(xy).2(x))

For three dimensions:

F(x,y,z):f(x,y,z);—kg(x,y,z);'+h(x,y,z)k = <f(x,y,z),g(x,y,z),h(x,y,z)>

We call, f(x,y,z),g(x,y,z) and h(x,y,z) component functions.

As with the vector functions in the previous class, we can define continuity of vector fields and show that

F is continuous if and only if its component functions are continuous.

What follows are a number of examples with some commentary.
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Exl: The radial vector field £ =
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Note: Drawing vectors with their actual
length often leads to cluttered pictures of
vector fields. For this reason, most vector
fields are illustrated with proportional
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Ex2: Three examples
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Ex3: Radial and rotation fields
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Ex4: Vector fields in three dimensions
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2. Gradient Fields

W F s a sealar function of teo variables, recall that its gradient ¥/ ror grad 738 defined by

Vite vl = flv, v+ fi vt

Theretore Vris really o vector tield on 87 and is culled a gradient vector field. Like-
wise, 3t f b oa svalar fonction of three variables, s gradient is 2 veetor ficldon 7 given by

Vi vz = plaavsi SR i Al ek
At each point in a gradient field where the gradient is nonzero, the vector points in the direction in which

the rate of increase of f is maximum.

Ex6: Gradient fields are orthogonal to level curves.
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Definition: Gradient Fields and Potential Functions

Let @ be differentiable on a region of R? or R®. The vector field F=Vgpisa gradient field, and the
@ ®

function ¢ is a potential function for F .

Note: A potential function plays the role of an antiderivative of a vector field: Derivatives of the potential
function produce the vector field. if ¢ is a potential function for a gradient field, then ¢ + Cis also a

potential function for that gradient field, for any constant C.

Definition: Equipotential Curves and Surfaces

The level curves of a potential function are called equipotential curves (curves on which the potential

function is constant).

Because the equipotential curves are level curves of ¢, the vector field F' =V @is everywhere orthogonal
to the equipotential curves. Therefore, the vector field is visualized by drawing continuous flow curves or
streamlines that are everywhere orthogonal to the equipotential curves.
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