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The Divergence Theorem (Gauss’s Theorem) 

Vector fields can represent electric or magnetic fields, air velocities in hurricanes, or blood flow in an 
artery. These and other vector phenomena suggest movement of a "substance." A frequent question 
concerns the amount of a substance that flows across a surface - for example, the amount of water that 
passes across the membrane of a cell per unit time. Such flux calculations may be done using flux integrals 
as done previously. The Divergence Theorem offers an alternative method. In effect, it says that instead 
of integrating the flow in and out of a region across its boundary, you may also add up all the sources (or 
sinks) of the flow throughout the region. 

Throughout this chapter, we have been drawing parallels between theorems.  The divergence theorem is 
no different.   

• The circulation form of Green’s Theorem →  Stokes’ Theorem 

2D: 

2Dcurl

circulation (Green's Theorem)
C R

g fF T ds dA
x y

 ∂ ∂
= ⋅ = − ∂ ∂ 
∫ ∫∫
 





 

3D: ( )
3Dcurl

circulation (Stokes' Theorem)
C S

F dr F n dS= ⋅ = ∇× ⋅∫ ∫∫
 

 





 

 
• The flux form of Green’s Theorem →  The Divergence Theorem 

2D: 

2Ddivergence

flux (Green's Theorem)
C R

f gF n ds dA
x y

 ∂ ∂
= ⋅ = + ∂ ∂ 
∫ ∫∫








 

3D: ( )
3 Divergence

flux (DivergenceTheorem)
S D

D

F n dS F dV= ⋅ = ∇ ⋅∫∫ ∫∫∫
 





 

The line integral on the left gives the flux across the boundary of R. The double integral on the right 

measures the net expansion or contraction of the vector field within R. If F


represents a fluid flow or the 
transport of a material, the theorem says that the cumulative effect of the sources (or sinks) of the flow 
within R equals the net flow across its boundary. 

The Divergence Theorem is a direct extension of Green's Theorem. The plane region in Green's Theorem 

becomes a solid region D in 3
 , and the closed curve in Green's Theorem becomes the oriented surface 

S that encloses D. The flux integral in Green's Theorem becomes a surface integral over S, and the double 
integral in Green's Theorem becomes a triple integral over D of the three-dimensional divergence. 
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Theorem: Divergence Theorem (also called Gauss’ Theorem) 

Let F


be a vector field whose components have continuous first partial derivatives in a connected 
and simply connected region D enclosed by a smooth oriented surface S. Then 

( )
3 Divergence

flux
S D

D

F n dS F dV= ⋅ = ∇ ⋅∫∫ ∫∫∫
 





 

Where n is the outward unit normal vector on S. 

 

Ex1: Let S  be the sphere 2 2 2 2x y z a+ + =  oriented outward.  Use the Divergence Theorem to find the 

flux of the vector field ( ), ,F x y z zk=
 

 across S . 
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Interpreting the Divergence Theorem: Suppose v  is the velocity field of a material, such as water or 

molasses, and ρ  is its constant density. The vector field F vρ=




 describes the mass transport of the 

material.  This means that F


 gives the mass of material flowing past a point (in each of the three 

coordinate directions) per unit of surface area per unit of time. When F


 is multiplied by an area, the 
result is the flux. 

The Divergence Theorem shows that the net flux (mass being transported) across the boundary surface 
is equal to the net divergence across the region inside the surface. 

More succinctly, the flux of material (fluid, heat, electric field lines) across the boundary of a region is 
the cumulative effect of the sources within the region. 

 

Ex2: Let S  be the cube that is placed on the first octant at the origin with each side of length 1, oriented 

outward.  Find the flux of the radial vector field ( ) 2, , 2 3F x y z xi y j z k= + +
   

 across S . 
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Note: With Stokes' Theorem, rotation fields are noteworthy because they have a nonzero curl. With the 
Divergence Theorem, the situation is reversed.  Pure rotation fields have zero divergence. However, with 
the Divergence Theorem, radial fields are interesting and have many physical applications. 

 

Ex3: Let S  be the surface of the solid enclosed by the circular cylinder 2 2 9x y+ =  and the planes 0z =  

and 2z = , oriented outward.  Use the Divergence Theorem to find the flux of the vector field 

( ) 3 3 2, ,F x y z x i y j z k= + +
   

 across S . 
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Ex4: Let S  be the surface of the solid enclosed by the hemisphere 2 2 2z a x y= − −  and the plane 

0z = , oriented outward.  Use the Divergence Theorem to find the flux of the vector field 

( ) 3 3 3, ,F x y z x i y j z k= + +
   

 across S . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

We have reached the conclusion of calculus (at least until you seek out a more advanced course as part 
of your studies to be a mathematics major).  To help understand what has been accomplished, consider 
the following lengthy adaptation from George Simmon’s calculus text titled “Maxwell’s Equations, A Final 
Thought.”   

To gain a slight glimpse of the significance of the ideas of this chapter, we look very briefly at the famous 
equations formulated in the 1860’s by James Clerk Maxwell (1831-1879).  These equations are 
remarkable because they contain a complete theory of everything that was then known or would later 
become known about electricity and magnetism.   

In Maxwell’s theory there are two vector fields defined at every point in space: an electric field E


and a 

magnetic field B


.  The electric field is produced by charged particles (electrons, protons, etc.) that may 
be moving or stationary, and the magnetic field by moving charged particles. 
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All known phenomena involving electromagnetism can be explained and understood by means of 
Maxwell’s Equations which written in the notation of this course are: 

• 
0S

QE n dA
ε

⋅ =∫∫




  

o Meaning: flux of E


through a closed surface = 
0

chargeinside
ε

 

 

• 
C S

E dr B n dA
t
∂

⋅ = − ⋅
∂∫ ∫∫

 

 



 

o Meaning: line integral of E


around a loop = ( )flux of thru theloopB
t
∂

−
∂



 

 

• 0
S

B n dA⋅ =∫∫




 

o Meaning: flux of B


through a closed surface = 0 
 

• 2

0

1

C S S

c B dr j n dA E n dA
tε
∂

⋅ = ⋅ + ⋅
∂∫ ∫∫ ∫∫

 


  



 

o Meaning: 2c (integral of B


around a loop) = ( )
0

current thru loop flux of thru loopE
tε
∂

+
∂



 

 

Here Q relates to charge, 0ε is a constant, c is the speed of light, and j


is the current density (not to be 

confused with the unit vector in the direction of the y-axis).  We make no attempt to discuss the 
meaning of these four equations, be we do point out that the first two make statements about the 

divergence and curl of E


, and the second two about the divergence and curl of B


. 

Our only purpose in mentioning these matters is to try to make it perfectly clear to the student that the 
mathematics we have been doing in this chapter has profoundly important applications in physical science.  
The Nobel Prize winning physicist Richard Feynman devotes the first 21 chapters in vol. 2 of his Lectures 
to the meaning and implications of Maxwell’s equations.  At one point he memorably remarks: 

From a long view of the history of mankind – seen from, say, ten thousand years from now – 
there can be little doubt that the most significant event of the 19th century will be judged as 
Maxwell’s discovery of the laws of electrodynamics.  The American Civil War will pale into 
provincial insignificance in comparison with this important scientific event of the same decade. 

In making this provocative comment, perhaps Feynman was carried away by his ebullient enthusiasm – but 
perhaps not. 

The Very Very Very End. 


