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Line Integrals 

Objective: 

1. Scalar line integrals in two and three dimensions 

2. Line integrals across vector fields (work) 

3. Circulation and flux 

 

I. Scalar line integrals in two and three dimensions 

In previous chapters we considered three kinds of integrals in rectangular coordinates: single integrals 

over intervals, double integrals over two-dimensional regions, and triple integrals over three-dimensional 

regions.  In this section we shall discuss line integrals, which are integrals over curves in two or three-

dimensional space.  Integrals over curves were invented/discovered in the early 19th century to solve 

problems involving a variety of things such as fluid flow, force, electricity, and magnetism.  The application 

that is easiest to visualize is the surface area of the curtain “under” a surface and along a curve C on the 

xy-plane.   

In order to unpack this surface area, we will need to parameterize the curve C which requires that we 

distinguish between the parameter t (not visible on the graph) and the arclength s (visible). 

 

 
 

With this in mind, we can define and calculate the scalar line integral in the plane which represents that 

area of the curtain “under” f and above the xy-plane along the curve C. 

 

Definition: Scalar Line Integral in the Plane 

 

Suppose the scalar-valued function f is defined on a region containing the smooth curve C given 

by      ,r t x t y t  for a t b  .   

The line integral of f over C is          * *

0
1

, lim ,
n

k k k
C t

k

f x t y t ds f x t y t s
 



   provided this 

limit exists over all partitions of [a,b]. When the limit exists, f is said to be integrable on C. 
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The key to applying this definition is finding a formula for ds .  To do this, recall that if a space curve is 

parameterized by  r t , then the cumulative arclength of C over the interval  ,a t  is    '
t

a
s t r u du   

which can be differentiated to reveal that    ' 's t r t  or using Leibniz notation  'ds r t dt   

 

The punchline: To evaluate a scalar line integral “under” f and along the path C parameterized by  r t  

with a t b   , we use the formulas: 

 

      

          

2

2 2

in : , '

, ' '

b

a
C

b

a

f ds f x t y t r t dt

f x t y t x t y t dt



 

 



 

 

and 

 

        

               

3

2 2 2

in : , , '

, , ' ' '

b

a
C

b

a

f ds f x t y t z t r t dt

f x t y t z t x t y t z t dt



  

 


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Ex1:  Find the area of the surface extending upward from the circle 
2 2 1x y   to the parabolic cylinder 

21z x  . 
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Important notes: 

 The procedure for evaluating the line integral 

C

f ds  (Formulas are given in two dimensions.  The 

three dimensional versions are analogous). 

o Find a parametric description of C in the form      ,r t x t y t  on a t b   

o Compute        
2 2

' ' 'r t x t y t  which we need to find ds . 

o Make substitutions for x and y in the integrand and evaluate an ordinary integral: 

      , '
C

f ds f x t y t r t dt    

 The value of the line integral doesn’t depend on the parametrization of the curve, provided that 

the curve is traversed exactly once as t  increases from a  to b . 

 

 Ordinary single integrals are a special case of the line integral where C  is the line segment joining 

 , 0a  and  , 0b  with parametric equations 0x x y a x b    .  In this case the line 

integral formula simplifies from  ,
C

f x y ds  to  ,0
b

a
f x dx   

 

 If C  is a piecewise-smooth curve, then we find the line integral for each piece 

and add them to get the line integral over C . 

 

 

 

 Any physical interpretation of a line integral depends on the physical 

interpretation of the function f .  For example, if f  represents the density of a thin wire shaped 

like C , then the total mass is the line integral of f  over C .  

 

 When setting up a line integral, the most difficult step is parameterizing the curve C.  Three 

common parameterizations are: 

o A line segment that starts with 0r  and ends in 1r  is given by: 

    0 11 0 1r t t r t r t      

o A circle  0 2t    or a semicircle  0 t   centered at    , ,x y a b  with radius 

r is given by cos and sinx a r t y b r t      for counter clockwise movement. 

o A curve that can be represented by a function  y f x  on a x b  .  In this case we 

let x t  which makes  y f t .  So    ,r t t f t  on a t b  . 
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II. Line integrals across vector fields (work) 

This is what we have learned so far about work:  

(review): Work Done by a Constant Force:  

 If an object is moved a distance d  in the direction of an applied constant force F , then the 

work W  done by the force is defined as W Fd  

 The work done by a constant force F that moves an object from P  to Q  (creating 

displacement vector D ) can be calculated by W F D   

 

(review): Work Done by a Variable Force:  

 If an object moves along a straight line from a  to b , subject to a continuously varying force 

(not constant)  f x , we define the work as  
b

a
W f x dx   

 

(new): Work required to move a particle through a vector field: 

 If an object moves along a smooth curve C , through a continuous force field 

   , ,F f x y i g x y j   defined on 
2
, then the work done is obtained by integrating the 

tangential component of force along the curve so 
C

W F T ds   where  ,T x y  is the unit 

tangent vector at the point  ,x y  on C . 

   

At first glance this looks complicated, but work is actually straight forward to implement.  Recall 

that if the curve is given by the vector equation      r t x t i y t j  , then  
 

 

'

'

r t
T t

r t
 .    

This means that we calculate work using the formula: 

 

 
 

'
'

'C C C

ds

T

r t
W F T ds F r t dt F dr

r t
          

Or simply work
C

F dr    

 

The definition in three dimensions is analogous.   
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Ex2:  Find the work done by the force field   3F x yi x y j    on a particle that moves along the 

parabola 
2y x  from  2,4  to  1,1 . 
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One common way to write the work formula is to reference x, and y rather than r.  To do this, recall that 

     ,r t x t y t .  This means that      ' ' , '
dr

r t x t y t
dt

   and the work formula is: 

         
 

 
 ' '

work , , , ' , ' , ,
C C C

x t dt y t dtdrF

F dr f x y g x y x t y t dt f x y dx g x y dy         or simply 

work
C C

F dr f dx g dy      

Ex3: Evaluate the  2 2work 2
C

xy dx x y dy    required to move a particle along the circular arc C . 

 

 

 

 

 

 

 

 

 

 

 

 

In general, the value of a line integral (and work) depends on three things: 

 The location of the endpoints of the curve. 

 The length and shape of the path (later will we learn conditions that cause the integral to be 

independent of path) 

 The direction or orientation of the curve. 
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Ex4: Evaluate the 
2work

C

x y dx x dy   for a particle to move in a counterclockwise direction around 

the triangular path given.  
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Ex5: Evaluate  3

C

I xy z ds   where C  is the portion of the helix given by the parametric equations: 

cos sin 0x t y t z t t       
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Ex6: Find the mass of a thin wire if the density function is  , ,x y z kz   with 0k   and shaped in the 

form of a helix with parametric equations  cos sin 2 0x t y t z t t      . 
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Ex7: Evaluate work
C

yz dx xz dy xydz    where C  is   2 3 on 0 1r t ti t j t k t     . 
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III. Circulation and flux 

A number of the forthcoming theorems/results rely on the idea of a closed path (or closed curve).   A 

closed curve is one whose initial and terminal points are the same.   

In this case, we give the work to move an object around a closed path a new name: circulation. 

Definition: Circulation 

Let F  be a continuous vector field on a region D of 
3
 and let C be a closed smooth oriented 

curve in D.  The circulation of F is circulation work
C

F T ds    where  represents the 

line integral around a closed path. 

Ex8: Let C be the unit circle with counterclockwise orientation.  Find the circulation on C for the radial 

flow field ,F x y  and the rotation flow field ,F y x   
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While circulation is a measure of the tangential component of field along a path, flux is a measure of the 

normal component of the field along a path. 

In two dimensions, this will be flux
C

F n ds   where 

n T k   ( k  being the unit vector in the z direction). 

 

 

 

 

 

 

While we may not yet be able to calculate the flux, we already know enough to compare the flux and 

circulation in radial and rotational flows. 
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Ex9: Derive the (computationally nice) formula for flux in two dimensions where ,F f g  represents 

a continuous vector field traversed by path C:      ,r t x t y t  for a t b  .   


