17.1: Vector Fields
Math 264

INTHIS CHAPTER WE STUDY the calculus of vector ficlds. (These are functions that assign vec-
tors to points in space.) In particular we define line integrals (which can be used to find the work
done by a force field in moving an object along a curve). Then we define surface integrals (which
can be used to find the rate of fluid flow across a surface). The connections between these new
types of integrals and the single, double, and triple integrals that we have already met are given
by the higher-dimensional versions of the Fundamental Theorem of Calculus: Green’s Theorem,
Stokes” Theorem, and the Divergence Theorem.

Vector Fields
Objective:

I.  Vector fields and examples
2. Gradient Fields

I. Vector Fields

In this section we consider functions called vector fields that associate vectors with points in two (or
three) dimensions. That means they have domain as a set of points in R? (or ]Rs) and range as a set of

vectors in V, (or V,). These functions play an important role in the study of fluid flow, gravitational force

fields, electromagnetic force fields and a wide range of other applied problems. We generally use F to
denote a vector field.

For two dimensions:

F(xy)=f(xy)i+g(xy)i=(f(xy).9(xY))

For three dimensions:

F(xy.2)=f(xy.2)i+g(xy.z)J+h(xy.2)k=(f(xy.2),9(xy.2).h(x,y,2))

We call f (X, Y, Z), g (X, Y, Z) and h(X, Y, Z) component functions.

As with the vector functions in the previous class, we can define continuity of vector fields and show that

F is continuous if and only if its component functions are continuous.

What follows are a number of examples with some commentary.
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Exl: The radial vector field lf:<2x,2y>. N SRR RPN
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Note: Drawing vectors with their actual
length often leads to cluttered pictures of
vector fields. For this reason, most vector
fields are illustrated with proportional
scaling: All vectors are multiplied by a scalar
chosen to make the vector field as
understandable as possible.
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Ex2: Three examples
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Ex3: Radial and rotation fields

A
Vgl(x, y) parallel to F Ve, »-G=0 ", Rotation vector field G =

Tovem p=2xn2n Iovemw=2x2y

A 4

o BN

[ Fux, 3‘)_.»"'

Page 2 of 4



17.1: Vector Fields
Math 264

Ex4: Vector fields in three dimensions
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2. Gradient Fields

If f is a scalar function of two variables, recall that its gradient Vf (or grad f) is defined by

Vil y) = filx.¥) i+ fi(x,y)j

Therefore Vf is really a vector field on R” and is called a gradient vector field. Like-
wise, if / is a scalar function of three variables, its gradient is a vector field on R* given by

Vi, y, 2) =filx,y,2)i + fil(x. ¥, 2) J + fi(x, ¥, 2) k

At each point in a gradient field where the gradient is nonzero, the vector points in the direction in which

the rate of increase of f is maximum.

Ex6: Gradient fields are orthogonal to level curves.
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The vector field F = Vi is orthogonal to the
fevel curves of wat(x, ).
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Definition: Gradient Fields and Potential Functions

Let @ be differentiable on a region of R? or R®. The vector field F =V is a gradient field, and the

function @ is a potential function for F.

Note: A potential function plays the role of an antiderivative of a vector field: Derivatives of the potential
function produce the vector field. If ¢ is a potential function for a gradient field, then ¢ + Cis also a

potential function for that gradient field, for any constant C.

Definition: Equipotential Curves and Surfaces

The level curves of a potential function are called equipotential curves (curves on which the potential
function is constant).

Because the equipotential curves are level curves of ¢, the vector field F= V @is everywhere orthogonal

to the equipotential curves. Therefore, the vector field is visualized by drawing continuous flow curves or
streamlines that are everywhere orthogonal to the equipotential curves.

F = Vg is orthogonal
to the level curves
of ¢.

Flow curves are
aligned with F
and orthogonal
to level curves.

Equipotential
(level) curves
of ¢
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